
ARM® Generic Interrupt Controller
Architecture version 2.0

Architecture Specification
Copyright © 2008, 2011, 2013 ARM. All rights reserved.
ARM IHI 0048B.b (ID072613)

ARM Generic Interrupt Controller
Copyright © 2008, 2011, 2013 ARM. All rights reserved.

Release Information

The following changes have been made to this document.

Status of Issue B.b of this document

Issue B.b of this document is a re-issue of issue B incorporating the updated Propriatary Notice for the document.
Beyond page four of the document the only changes between issue B and issue B.b are:
• Changes to the page footers to show the new version number, copyright dates, and ID code.
• Changed page numbering, because of the longer Propriatary Notice.
• A statement in Appendix C Revisions that there are no technical changes between issue B and issue B.b.

Proprietary Notice

ARM GENERIC INTERRUPT CONTROLLER (GIC) ARCHITECTURE SPECIFICATION LICENCE

THIS END USER LICENCE AGREEMENT ("LICENCE") IS A LEGAL AGREEMENT BETWEEN YOU (EITHER A
SINGLE INDIVIDUAL, OR SINGLE LEGAL ENTITY) AND ARM LIMITED ("ARM") FOR THE USE OF THE RELEVANT
GIC ARCHITECTURE SPECIFICATION ACCOMPANYING THIS LICENCE. ARM IS ONLY WILLING TO LICENSE THE
RELEVANT GIC ARCHITECTURE SPECIFICATION TO YOU ON CONDITION THAT YOU ACCEPT ALL OF THE
TERMS IN THIS LICENCE. BY CLICKING "I AGREE" OR OTHERWISE USING OR COPYING THE RELEVANT GIC
ARCHITECTURE SPECIFICATION YOU INDICATE THAT YOU AGREE TO BE BOUND BY ALL THE TERMS OF THIS
LICENCE. IF YOU DO NOT AGREE TO THE TERMS OF THIS LICENCE, ARM IS UNWILLING TO LICENSE THE
RELEVANT GIC ARCHITECTURE SPECIFICATION TO YOU AND YOU MAY NOT USE OR COPY THE RELEVANT
GIC ARCHITECTURE SPECIFICATION AND YOU SHOULD PROMPTLY RETURN THE RELEVANT GIC
ARCHITECTURE SPECIFICATION TO ARM.

"LICENSEE" means You and your Subsidiaries.

"Subsidiary" means, if You are a single entity, any company the majority of whose voting shares is now or hereafter owned or
controlled, directly or indirectly, by You. A company shall be a Subsidiary only for the period during which such control exists.

1. Subject to the provisions of Clauses 2, 3 and 4, ARM hereby grants to LICENSEE a perpetual, non-exclusive,
non-transferable, royalty free, worldwide licence to:

a. use and copy the relevant GIC Architecture Specification for the purpose of developing and having developed
products that comply with the relevant GIC Architecture Specification;

b. manufacture and have manufactured products which either: (i) have been created by or for LICENSEE under the
licence granted in Clause 1a; or (ii) incorporate a product(s) which has been created by a third party(s) under a
licence granted by ARM in Clause 1a of such third party’s ARM GIC Architecture Specification Licence; and

c. offer to sell, sell, supply or otherwise distribute products which have either been (i) created by or for LICENSEE
under the licence granted in Clause 1a; or (ii) manufactured by or for LICENSEE under the licence granted in
Clause 1b.

2. LICENSEE hereby agrees that the licence granted in Clause 1 is subject to the following restrictions:

a. where a product is created under Clause 1a or manufactured under Clause 1b it must contain at least one processor
core which has either been (i) developed by or for ARM; or (ii) developed under licence from ARM;

b. the licences granted in Clause 1c shall not extend to any portion or function of a product that is not itself compliant
with part of the relevant GIC Architecture Specification; and

c. no right is granted to LICENSEE to sublicense the rights granted to LICENSEE under this Agreement.

Change History

Date Issue Confidentiality Change

23 September 2008 A Non-Confidential First release for version 1.0

13 June 2011 B Non-Confidential First release for version 2.0

26 July 2013 B.b Non-Confidential Re-release of issue B with new Proprietary Notice
ii Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

3. Except as specifically licensed in accordance with Clause 1, LICENSEE acquires no right, title or interest in any ARM
technology or any intellectual property embodied therein. In no event shall the licences granted in accordance with Clause
1 be construed as granting LICENSEE, expressly or by implication, estoppel or otherwise, a licence to use any ARM
technology except the relevant GIC Architecture Specification.

4. THE RELEVANT GIC ARCHITECTURE SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES
EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF
SATISFACTORY QUALITY, MERCHANTABILITY, NONINFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE.

5. No licence, express, implied or otherwise, is granted to LICENSEE, under the provisions of Clause 1, to use the ARM
tradename in connection with the relevant GIC Architecture Specification or any products based thereon. Nothing in
Clause 1 shall be construed as authority for LICENSEE to make any representations on behalf of ARM in respect of the
relevant GIC Architecture Specification.

6. This Licence shall remain in force until terminated by you or by ARM. Without prejudice to any of its other rights if
LICENSEE is in breach of any of the terms and conditions of this Licence then ARM may terminate this Licence
immediately upon giving written notice to You. You may terminate this Licence at any time. Upon expiry or termination
of this Licence by You or by ARM LICENSEE shall stop using the relevant GIC Architecture Specification and destroy
all copies of the relevant GIC Architecture Specification in your possession together with all documentation and related
materials. Upon expiry or termination of this Licence, the provisions of clauses 6 and 7 shall survive.

7. The validity, construction and performance of this Agreement shall be governed by English Law.

ARM contract references: LES-PRE-20079 ARM GENERIC INTERRUPT CONTROLLER (GIC) ARCHITECTURE
Specification Licence.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Note
 The term ARM can refer to versions of the ARM architecture, for example ARMv6 refers to version 6 of the ARM architecture.
The context makes it clear when the term is used in this way.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. iii
ID072613 Non-Confidential

iv Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

Contents
ARM Generic Interrupt Controller Architecture
Specification

Preface
About this specification ... viii
Using this specification ... ix
Conventions ... x
Additional reading ... xi
Feedback ... xii

Chapter 1 Introduction
1.1 About the Generic Interrupt Controller architecture ... 1-14
1.2 Security Extensions support .. 1-16
1.3 Virtualization support ... 1-17
1.4 Terminology ... 1-18

Chapter 2 GIC Partitioning
2.1 About GIC partitioning .. 2-22
2.2 The Distributor ... 2-24
2.3 CPU interfaces ... 2-26

Chapter 3 Interrupt Handling and Prioritization
3.1 About interrupt handling and prioritization ... 3-34
3.2 General handling of interrupts .. 3-37
3.3 Interrupt prioritization ... 3-44
3.4 The effect of interrupt grouping on interrupt handling .. 3-48
3.5 Interrupt grouping and interrupt prioritization ... 3-53
3.6 Additional features of the GIC Security Extensions ... 3-59
3.7 Pseudocode details of interrupt handling and prioritization 3-61
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. v
ID072613 Non-Confidential

Contents
3.8 The effect of the Virtualization Extensions on interrupt handling 3-67
3.9 Example GIC usage models ... 3-68

Chapter 4 Programmers’ Model
4.1 About the programmers’ model .. 4-74
4.2 Effect of the GIC Security Extensions on the programmers’ model 4-80
4.3 Distributor register descriptions .. 4-84
4.4 CPU interface register descriptions .. 4-124
4.5 Preserving and restoring GIC state .. 4-155

Chapter 5 GIC Support for Virtualization
5.1 About implementing a GIC in a system with processor virtualization 5-158
5.2 Managing the GIC virtual CPU interface .. 5-160
5.3 GIC virtual interface control registers ... 5-167
5.4 The virtual CPU interface ... 5-178
5.5 GIC virtual CPU interface registers .. 5-179

Appendix A Pseudocode Index
A.1 Index of pseudocode functions .. A-198

Appendix B Register Names
B.1 Alternative register names ... B-202
B.2 Register name aliases ... B-203
B.3 Index of architectural names ... B-204

Appendix C Revisions

Glossary
vi Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

Preface

This preface introduces the ARM® Generic Interrupt Controller Architecture Specification. It contains the following
sections:
• About this specification on page viii
• Using this specification on page ix
• Conventions on page x
• Additional reading on page xi
• Feedback on page xii.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. vii
ID072613 Non-Confidential

 Preface
 About this specification
About this specification
This specification describes the ARM Generic Interrupt Controller (GIC) architecture.

Throughout this document, references to the GIC or a GIC refer to a device that implements this GIC architecture.
Unless the context makes it clear that a reference is to an IMPLEMENTATION DEFINED feature of the device, these
references describe the requirements of this specification.

Intended audience

The specification is written for users that want to design, implement, or program the GIC in a range of
ARM-compliant implementations from simple uniprocessor implementations to complex multiprocessor systems.

The specification assumes that users have some experience of ARM products. It does not assume experience of the
GIC.
viii Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

 Preface
 Using this specification
Using this specification
This specification is organized into the following chapters:

Chapter 1 Introduction

Read this for an overview of the GIC, and information about the terminology used in this document.

Chapter 2 GIC Partitioning

Read this for a description of the major interfaces and components of the GIC. The chapter also
introduces how they operate, in a simple implementation.

Chapter 3 Interrupt Handling and Prioritization

Read this for a description of the requirements for interrupt handling, and the interrupt priority
scheme for a GIC.

Chapter 4 Programmers’ Model

Read this for a description of the Distributor and CPU interface registers.

Chapter 5 GIC Support for Virtualization

Read this for a description of how the GIC Virtualization Extensions support the implementation of
a GIC in a multiprocessor system that supports processor virtualization.This chapter includes a
description of the programmers’ model for the virtual interface control and virtual CPU interface
registers.

Appendix A Pseudocode Index

Read this for an index to the pseudocode functions defined in this specification.

Appendix B Register Names

Read this for a description of the differences in the register names in earlier descriptions of the GIC
architecture, and for an alphabetic index of the register names.

Appendix C Revisions

Read this for a description of the technical changes between released issues of this book.

 Glossary Read this for definitions of some terms used in this book.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. ix
ID072613 Non-Confidential

 Preface
 Conventions
Conventions
The following sections describe conventions that this book can use:
• General typographic conventions
• Signals
• Numbers
• Pseudocode descriptions.

General typographic conventions

The typographical conventions are:

italic Introduces special terminology, denotes internal cross-references and citations, or
highlights an important note.

bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items
appearing in assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS Used for a few terms that have specific technical meanings, and are included in the
Glossary.

Colored text Indicates a link. This can be:

• a URL, for example, http://infocenter.arm.com

• a cross-reference, that includes the page number of the referenced information if it is
not on the current page, for example, Distributor Control Register, GICD_CTLR on
page 4-85

• a link, to a chapter or appendix, or to a glossary entry, or to the section of the
document that defines the colored term, for example Banked register or
GICD_CTLR.

Signals

In general this specification does not define processor signals, but it does include some signal examples and
recommendations. The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:
• HIGH for active-HIGH signals
• LOW for active-LOW signals.

Lower-case n At the start or end of a signal name denotes an active-LOW signal.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x. In
both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.

Pseudocode descriptions

This specification uses a form of pseudocode to provide precise descriptions of the specified functionality. This
pseudocode is written in a monospace font, and follows the conventions described in the ARM Architecture Reference
Manual, ARMv7-A and ARMv7-R edition.
x Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

 Preface
 Additional reading
Additional reading
This section lists relevant publications from ARM and third parties.

See the Infocenter, http://infocenter.arm.com, for access to ARM documentation.

ARM publications
• ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition (ARM DDI 0406), issue C or later.

Other publications

The following books are referred to in this manual, or provide more information:
• JEDEC Solid State Technology Association, Standard Manufacture’s Identification Code, JEP106.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. xi
ID072613 Non-Confidential

 Preface
 Feedback
Feedback
ARM welcomes feedback on its documentation.

Feedback on this specification

If you have comments on the content of this specification, send e-mail to errata@arm.com. Give:
• the title
• the number, ARM IHI 0048B.b
• the page numbers to which your comments apply
• a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
xii Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

Chapter 1
Introduction

This chapter gives an overview of the GIC and information about the terminology used in this document. It contains
the following sections:
• About the Generic Interrupt Controller architecture on page 1-14
• Security Extensions support on page 1-16
• Virtualization support on page 1-17
• Terminology on page 1-18.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 1-13
ID072613 Non-Confidential

1 Introduction
1.1 About the Generic Interrupt Controller architecture
1.1 About the Generic Interrupt Controller architecture
The Generic Interrupt Controller (GIC) architecture defines:
• the architectural requirements for handling all interrupt sources for any processor connected to a GIC
• a common interrupt controller programming interface applicable to uniprocessor or multiprocessor systems.

Note
 The architecture describes a GIC designed for use with one or more processors that comply with the ARM A and R
architecture profiles. However the GIC architecture does not place any restrictions on the processors used with an
implementation of the GIC.

The GIC is a centralized resource for supporting and managing interrupts in a system that includes at least one
processor. It provides:
• registers for managing interrupt sources, interrupt behavior, and interrupt routing to one or more processors
• support for:

— the ARM architecture Security Extensions
— the ARM architecture Virtualization Extensions
— enabling, disabling, and generating processor interrupts from hardware (peripheral) interrupt sources
— Software-generated Interrupts (SGIs)
— interrupt masking and prioritization
— uniprocessor and multiprocessor environments
— wakeup events in power-management environments.

The GIC includes interrupt grouping functionality that supports:
• configuring each interrupt as either Group 0 or Group 1
• signaling Group 0 interrupts to the target processor using either the IRQ or the FIQ exception request
• signaling Group 1 interrupts to the target processor using the IRQ exception request only
• a unified scheme for handling the priority of Group 0 and Group 1 interrupts
• optional lockdown of the configuration of some Group 0 interrupts.

Note
 • Interrupt grouping is present in all GICv2 implementations and in GICv1 implementations that include the

GIC Security Extensions, see Changes in version 2.0 of the Specification on page 1-15.

• In many implementations the IRQ and FIQ interrupt requests correspond to the IRQ and FIQ asynchronous
exceptions that are supported by all variants of the ARM architecture except the Microcontroller profile
(M-profile). For more information about IRQ, FIQ, and asynchronous exceptions, see the ARM Architecture
Reference Manual, ARMv7-A and ARMv7-R edition.

1.1.1 GIC architecture specification version

This specification defines version 2.0 of the GIC architecture (GICv2), and also describes version 1.0 of the
architecture (GICv1).

The GIC architecture specification version is independent of the rnpn version, or major and minor revision
description, used for ARM product releases.
1-14 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

1 Introduction
1.1 About the Generic Interrupt Controller architecture
1.1.2 Changes in version 2.0 of the Specification

Version 2.0 of the Architecture Specification contains the following changes and additions to version 1.0:

1. The addition of the optional GIC Virtualization Extensions, that support the implementation of the GIC in a
system that supports processor virtualization. For more information, see Virtualization support on page 1-17.

2. A change to the architectural status of interrupt grouping. Interrupt grouping, and the ability to use FIQs to
signal Group 0 interrupts, are provided:
• in all GICv2 implementations
• only as part of the optional Security Extensions in GICv1 implementations.

Note
 In version 1.0 of the Specification, interrupt grouping is presented only as the classification of interrupts as

Secure or Non-secure, see item 7 of this list.

3. The addition of wakeup event support in power management environments. For more information, see Power
management, GIC v2 on page 2-31.

4. The addition of support for the save and restore of all GIC state, for power-down, or context switching,
including virtual machine context switching in a system that supports virtualization. This means that some
state that is read-only in GICv1 becomes read/write in GICv2. For more information, see Preserving and
restoring GIC state on page 4-155.

5. The addition of an option to split interrupt completion into two stages, Priority drop and interrupt
deactivation. For more information, see Priority drop and interrupt deactivation on page 3-38.

6. The addition of controls to disable the forwarding of legacy interrupt signals to a connected processor when
forwarding of interrupts from the GIC to that processor is also disabled. For more information see Interrupt
signal bypass, and GICv2 bypass disable on page 2-27.

7. Changes to the terminology used to describe the interrupt grouping features of the GICv1 Security
Extensions, to clarify that these features can be used to implement functionality that is unrelated to the scope
of the ARM Security Extensions present on an ARM processor.

Note
 As indicated in item 2, these features of the GICv1 Security Extensions are included in all GICv2

implementations. That is, in GICv2 they are not part of the optional Security Extensions.

The terminology change includes renaming the Interrupt Security Registers to Interrupt Group Registers.
These registers separate interrupts into two groups, Group 0 and Group 1. In specific contexts, typically when
a GIC that implements the GIC Security Extensions is connected to an ARM processor that implements the
processor Security Extensions, Group 0 interrupts are Secure interrupts and Group 1 interrupts are
Non-secure interrupts. For more information, see Security Extensions support on page 1-16.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 1-15
ID072613 Non-Confidential

1 Introduction
1.2 Security Extensions support
1.2 Security Extensions support
The ARM processor Security Extensions are an optional extension to the ARMv7-A architecture profile. This
means it is IMPLEMENTATION DEFINED whether an ARMv7-A implementation includes the Security Extensions. The
ARM Security Extensions facilitate the development of secure applications by:
• integrating hardware security features into the architecture
• providing Secure virtual memory space that is accessed by memory accesses in the Secure state
• providing Non-secure virtual memory space that is accessed by memory accesses in the Non-secure state.

See Processor security state and Secure and Non-secure GIC accesses on page 1-20 for more information.

When a GIC that implements the GIC Security Extensions is connected to a processor that implements the ARM
Security Extensions:

• Group 0 interrupts are Secure interrupts, and Group 1 interrupts are Non-secure interrupts.

• The behavior of processor accesses to registers in the GIC depends on whether the access is Secure or
Non-secure, see Processor security state and Secure and Non-secure GIC accesses on page 1-20.

Except where this document explicitly indicates otherwise, when accessing GIC registers:

— a Non-secure read of a register field holding state information for a Secure interrupt returns zero

— the GIC ignores any Non-secure write to a register field holding state information for a Secure
interrupt.

Non-secure accesses can only read or write information corresponding to Non-secure interrupts. Secure
accesses can read or write information corresponding to both Non-secure and Secure interrupts.

• Secure system software individually defines each implemented interrupt as either Secure or Non-secure.

• A Non-secure interrupt signals an IRQ interrupt request to a target processor.

• A Secure interrupt can signal either an IRQ or an FIQ interrupt request to a target processor.

• Secure software can manage interrupt sources securely without the possibility of interference from
Non-secure software. See Controlling Secure and Non-secure interrupts independently on page 3-69 for
more information.

Secure systems are backwards-compatible with software written for systems without the Security Extensions. See
Supporting IRQs and FIQs when not using the processor Security Extensions on page 3-70 for more information.
1-16 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

1 Introduction
1.3 Virtualization support
1.3 Virtualization support
The ARM processor Virtualization Extensions are optional extensions to the ARMv7-A architecture profile. This
means it is IMPLEMENTATION DEFINED whether an ARMv7-A implementation includes the Virtualization
Extensions.

The processor Virtualization Extensions provide hardware support for virtualizing the Non-secure state of an
VMSAv7 implementation. The extensions support system use of a virtual machine monitor, known as the
hypervisor, to switch guest operating systems.

Whether implemented in a uniprocessor or in a multiprocessor system, the processor Virtualization Extensions
support running multiple virtual machines on a single processor.

Interrupt handling is a major consideration in a virtualization implementation. The hypervisor can either handle a
physical interrupt itself, or generate a corresponding virtual interrupt that is signaled to a virtual machine. It is also
possible for the hypervisor to generate virtual interrupts that do not correspond to physical interrupts.

GICv2 extends the GIC architecture to include the GIC Virtualization Extensions. These extensions support the
handling of virtual interrupts, in addition to physical interrupts, in a system that supports processor virtualization.
An example of such a system is one where a GIC is integrated with processors that implement the ARM processor
Virtualization Extensions. The GIC Virtualization Extensions provide mechanisms to minimize the hypervisor
overhead of routing interrupts to virtual machines. See Chapter 5 GIC Support for Virtualization for more
information.

Note
 • A processor that implements the ARM Virtualization Extensions must also implement the ARM Security

Extensions.

• A GIC that implements the GIC Virtualization Extensions is not required to implement the GIC Security
Extensions.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 1-17
ID072613 Non-Confidential

1 Introduction
1.4 Terminology
1.4 Terminology
The following sections define architectural terms used in this specification:
• Interrupt states
• Interrupt types
• Models for handling interrupts on page 1-19
• Spurious interrupts on page 1-20
• Processor security state and Secure and Non-secure GIC accesses on page 1-20
• Banking on page 1-20.

See also GIC register names on page 4-74.

1.4.1 Interrupt states

The following states apply at each interface between the GIC and a connected processor:

Inactive An interrupt that is not active or pending.

Pending An interrupt from a source to the GIC that is recognized as asserted in hardware, or
generated by software, and is waiting to be serviced by a target processor.

Active An interrupt from a source to the GIC that has been acknowledged by a processor, and is
being serviced but has not completed.

Active and pending A processor is servicing the interrupt and the GIC has a pending interrupt from the same
source.

1.4.2 Interrupt types

A device that implements this GIC architecture can manage the following types of interrupt:

Peripheral interrupt This is an interrupt asserted by a signal to the GIC. The GIC architecture defines the
following types of peripheral interrupt:

Private Peripheral Interrupt (PPI)
This is a peripheral interrupt that is specific to a single processor.

Shared Peripheral Interrupt (SPI)
This is a peripheral interrupt that the Distributor can route to any of a specified
combination of processors.

Each peripheral interrupt is either:

Edge-triggered
This is an interrupt that is asserted on detection of a rising edge of an interrupt
signal and then, regardless of the state of the signal, remains asserted until it is
cleared by the conditions defined by this specification.

Level-sensitive
This is an interrupt that is asserted whenever the interrupt signal level is active,
and deasserted whenever the level is not active.

Note
 While a level-sensitive interrupt is asserted its state in the GIC is pending, or active and

pending. If the peripheral deasserts the interrupt signal for any reason the GIC removes the
pending state from the interrupt. For more information see Interrupt handling state machine
on page 3-41.
1-18 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

1 Introduction
1.4 Terminology
Software-generated interrupt (SGI)

This is an interrupt generated by software writing to a GICD_SGIR register in the GIC. The
system uses SGIs for interprocessor communication.

An SGI has edge-triggered properties. The software triggering of the interrupt is equivalent
to the edge transition of the interrupt request signal.

When an SGI occurs in a multiprocessor implementation, the CPUID field in the Interrupt
Acknowledge Register, GICC_IAR, or the Aliased Interrupt Acknowledge Register,
GICC_AIAR, identifies the processor that requested the interrupt.

In an implementation that includes the GIC Virtualization Extensions:

• when an SGI occurs, management registers in the GIC virtualization Extensions
enable the requesting processor to be reported to the Guest OS, as required by the
GIC specifications

• by writing to the management registers in the GIC Virtualization Extensions, a
hypervisor can generate a virtual interrupt that appears to a virtual machine as an SGI.

See Software-generated interrupts on page 5-165 and List Registers, GICH_LRn on
page 5-176 for more information.

Virtual interrupt In a GIC that implements the GIC Virtualization Extensions, an interrupt that targets a
virtual machine running on a processor, and is typically signaled to the processor by the
connected virtual CPU interface. For more information, see About GIC partitioning on
page 2-22.

Maintenance interrupt

In a GIC that implements the GIC Virtualization Extensions, a level-sensitive interrupt that
is used to signal key events, such as a particular group of interrupts becoming enabled or
disabled. See Maintenance interrupts on page 5-164 for more information.

1.4.3 Models for handling interrupts

Note
 When describing the GIC interrupt handling models, the terms 1-N and N-N do not correspond to the mathematical
uses of the terms 1:N and N:N.

In a multiprocessor implementation, there are two models for handling interrupts:

1-N model Only one processor handles this interrupt. The system must implement a mechanism to determine
which processor handles an interrupt that is programmed to target more than one processor.

Note
 • The ARM GIC architecture does not guarantee that a 1-N interrupt is presented to:

— all processors listed in the target processor list
— an enabled interface, where at least one interface is enabled.

• A 1-N interrupt might be presented to an interface where the processor has masked the
interrupt event, see Implications of the 1-N model on page 3-41.

N-N model All processors receive the interrupt independently. When a processor acknowledges the interrupt,
the interrupt pending state is cleared only for that processor. The interrupt remains pending for the
other processors.

See Handling different interrupt types in a multiprocessor system on page 3-35 for more information.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 1-19
ID072613 Non-Confidential

1 Introduction
1.4 Terminology
1.4.4 Spurious interrupts

It is possible that an interrupt that the GIC has signaled to a processor is no longer required. If this happens, when
the processor acknowledges the interrupt, the GIC returns a special Interrupt ID that identifies the interrupt as a
spurious interrupt. Example reasons for spurious interrupts are:
• prior to the processor acknowledging an interrupt:

— software changes the priority of the interrupt
— software disables the interrupt
— software changes the processor that the interrupt targets

• for a 1-N interrupt, another target processor has previously acknowledged that interrupt.

1.4.5 Processor security state and Secure and Non-secure GIC accesses

A processor that implements the ARM Security Extensions has a security state, either Secure or Non-secure:
• a processor in Non-secure state can make only Non-secure accesses to a GIC
• a processor in Secure state can make both Secure and Non-secure accesses to a GIC
• software running in Non-secure state is described as Non-secure software
• software running in Secure state is described as Secure software.

For more information about the implementation of the Security Extensions on a processor see the ARM Architecture
Reference Manual, ARMv7-A and ARMv7-R edition.

A multiprocessor system with a GIC that implements the Security Extensions might include one or more processors
that do not implement the Security Extensions. Such a processor is implemented so that either:

• it makes only Secure accesses to the GIC, meaning any software running on the processor is Secure software
that can only make Secure accesses to the GIC

• it makes only Non-secure accesses to the GIC, meaning any software running on the processor is Non-secure
software.

1.4.6 Banking

Banking has a special meaning in ARM architectural specifications:

Interrupt banking

In a multiprocessor implementation, for PPIs and SGIs, the GIC can have multiple interrupts with
the same interrupt ID. Such an interrupt is called a banked interrupt, and is identified uniquely by
the combination of its interrupt ID and its associated CPU interface. For more information see
Interrupt IDs on page 2-24.

Register banking

Register banking refers to implementing multiple copies of a register at the same address. This
occurs:

• in a multiprocessor implementation, to provide separate copies for each processor of registers
corresponding to banked interrupts

• in a GIC that implements the Security Extensions, to provide separate Secure and Non-secure
copies of some registers.

For more information see Register banking on page 4-77.
1-20 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

Chapter 2
GIC Partitioning

This chapter describes the architectural partitioning of the major GIC interfaces and components, and introduces the
functionality of the major GIC components, the Distributor and the CPU interfaces. It contains the following
sections:
• About GIC partitioning on page 2-22
• The Distributor on page 2-24
• CPU interfaces on page 2-26.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 2-21
ID072613 Non-Confidential

2 GIC Partitioning
2.1 About GIC partitioning
2.1 About GIC partitioning
The GIC architecture splits logically into a Distributor block and one or more CPU interface blocks. The GIC
Virtualization Extensions add one or more virtual CPU interfaces to the GIC. Therefore, as Figure 2-1 on page 2-23
shows, the logical partitioning of the GIC is as follows:

Distributor The Distributor block performs interrupt prioritization and distribution to the CPU interface
blocks that connect to the processors in the system.

The Distributor block registers are identified by the GICD_ prefix.

CPU interfaces Each CPU interface block performs priority masking and preemption handling for a
connected processor in the system.

CPU interface block registers are identified by the GICC_ prefix.

When describing a GIC that includes the GIC Virtualization Extensions, a CPU interface is
sometimes called a physical CPU interface, to avoid possible confusion with a virtual CPU
interface.

Virtual CPU interfaces

The GIC Virtualization Extensions add a virtual CPU interface for each processor in the
system. Each virtual CPU interface is partitioned into the following blocks:

Virtual interface control
The main component of the virtual interface control block is the GIC virtual
interface control registers, that include a list of active and pending virtual
interrupts for the current virtual machine on the connected processor. Typically,
these registers are managed by the hypervisor that is running on that processor.
Virtual interface control block registers are identified by the GICH_ prefix.

Virtual CPU interface
Each virtual CPU interface block provides physical signaling of virtual
interrupts to the connected processor. The ARM processor Virtualization
Extensions signal these interrupts to the current virtual machine on that
processor. The GIC virtual CPU interface registers, accessed by the virtual
machine, provide interrupt control and status information for the virtual
interrupts. The format of these registers is similar to the format of the physical
CPU interface registers.
Virtual CPU interface block registers are identified by the GICV_ prefix.

Note
 The virtual CPU interface does not support the power management functionality described

in Power management, GIC v2 on page 2-31.

A GIC can implement up to eight CPU interfaces, numbered from 0-7. In a GIC that implements the GIC
Virtualization Extensions, virtual CPU interface numbering corresponds to the CPU interface numbering, so that
CPU interface 0 and virtual CPU interface 0 connect to the same processor.

This model supports implementation of the GIC in uniprocessing or multiprocessing environments, and the GIC
Virtualization Extensions extend that support to processors that support virtualization, in which, in Non-secure state:

• A Guest OS runs on a virtual machine

• A hypervisor is responsible for switching between virtual machines. This switching includes switching the
state held in the GIC virtual interface control registers.

Each block provides part of the GIC programmers’ model, and:

• the programmers’ model is generally the same for each implemented CPU interface.

• the programmers’ model for a virtual CPU interface is generally the same as the programmers’ model for a
physical CPU interface.
2-22 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

2 GIC Partitioning
2.1 About GIC partitioning
Note
 • The partitioning of the GIC described in this section is an architectural abstraction. Whether these blocks are

implemented separately or combined is IMPLEMENTATION SPECIFIC.

• In a GIC that implements the GIC Security Extensions in a multiprocessor system, a CPU interface can be
implemented so that it receives:
— both Secure and Non-secure accesses
— only Secure accesses
— only Non-secure accesses.

Figure 2-1 GIC logical partitioning

The remainder of this chapter, and Chapter 3 Interrupt Handling and Prioritization and Chapter 4 Programmers’
Model, describe the GIC without the GIC Virtualization Extensions. Chapter 5 GIC Support for Virtualization
describes the features added by the GIC Virtualization Extensions.

SPIs

Memory-mapped
interface, GICD_*

CFGSDISABLEa GIC

Distributor

Interrupt ID
32-1019

Memory-mapped
interface, GICV_*c To

virtual
machine

PPIs

(FIQa, IRQ)b

For
processor

7

To
processor

7

FIQa, IRQ

Memory-mapped
interface, GICC_*

Interrupt ID
0-15

CPU
interface 7

Interrupt ID
16-31

SGI
request b

Memory-mapped
interface, GICV_*c

Memory-mapped
interface, GICH_*c

(VFIQ, VIRQ)c

To
virtual

machine

To
hypervisor

PPIs

(FIQa, IRQ)b

For
processor

0

To
processor

0

FIQa, IRQ

Memory-mapped
interface, GICC_*

Interrupt ID
0-15

CPU
interface 0

Interrupt ID
16-31

SGI
request b

Virtual
CPU

interface 0c

Virtual
interface
control 0c

Memory-mapped
interface, GICH_*c

(VFIQ, VIRQ)c

To
hypervisor

Virtual
CPU

interface 7c

Virtual
interface
control 7c

a In GICv1, applies only if Security Extensions are implemented
b Optional input and bypass multiplexer, see text
c Applies only to GICv2 with Virtualization Extensions
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 2-23
ID072613 Non-Confidential

2 GIC Partitioning
2.2 The Distributor
2.2 The Distributor
The Distributor centralizes all interrupt sources, determines the priority of each interrupt, and for each CPU
interface forwards the interrupt with the highest priority to the interface, for priority masking and preemption
handling.

The Distributor provides a programming interface for:
• Globally enabling the forwarding of interrupts to the CPU interfaces.
• Enabling or disabling each interrupt.
• Setting the priority level of each interrupt.
• Setting the target processor list of each interrupt.
• Setting each peripheral interrupt to be level-sensitive or edge-triggered.
• Setting each interrupt as either Group 0 or Group 1.

Note
 For GICv1, setting interrupts as Group 0 or Group 1 is possible only when the implementation includes the

GIC Security Extensions.

• Forwarding an SGI to one or more target processors.

In addition, the Distributor provides:
• visibility of the state of each interrupt
• a mechanism for software to set or clear the pending state of a peripheral interrupt.

2.2.1 Interrupt IDs

Interrupts from sources are identified using ID numbers. Each CPU interface can see up to 1020 interrupts. The
banking of SPIs and PPIs increases the total number of interrupts supported by the Distributor.

The GIC assigns interrupt ID numbers ID0-ID1019 as follows:

• Interrupt numbers ID32-ID1019 are used for SPIs.

• Interrupt numbers ID0-ID31 are used for interrupts that are private to a CPU interface. These interrupts are
banked in the Distributor.

A banked interrupt is one where the Distributor can have multiple interrupts with the same ID. A banked
interrupt is identified uniquely by its ID number and its associated CPU interface number. Of the banked
interrupt IDs:

— ID0-ID15 are used for SGIs

— ID16-ID31 are used for PPIs

In a multiprocessor system:

— A PPI is forwarded to a particular CPU interface, and is private to that interface. In prioritizing
interrupts for a CPU interface the Distributor does not consider PPIs that relate to other interfaces.

— Each connected processor issues an SGI by writing to the GICD_SGIR in the Distributor. Each write
can generate SGIs with the same ID that target multiple processors.
In the Distributor, an SGI is identified uniquely by the combination of its interrupt number, ID0-ID15,
the target processor ID, CPUID0-CPUID7, and the processor source ID, CPUID0-CPUID7, of the
processor that issued the SGI. When the CPU interface communicates the interrupt ID to a targeted
processor, it also provides the processor source ID, so that the targeted processor can uniquely identify
the SGI.
SGI banking means the GIC can handle multiple SGIs simultaneously, without resource conflicts.
The Distributor ignores any write to the GICD_SGIR that is not from a processor that is connected to
one of the CPU interfaces. How the Distributor determines the processor source ID of a processor
writing to the GICD_SGIR is IMPLEMENTATION SPECIFIC.

In a uniprocessor system, there is no distinction between shared and private interrupts, because all interrupts
are visible to the processor. In this case the processor source ID value is 0.
2-24 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

2 GIC Partitioning
2.2 The Distributor
• Interrupt numbers ID1020-ID1023 are reserved for special purposes, see Special interrupt numbers on
page 3-43.

System software sets the priority of each interrupt. This priority is independent of the interrupt ID number.

In any system that implements the ARM Security Extensions, to support a consistent model for message passing
between processors, ARM strongly recommends that all processors reserve:
• ID0-ID7 for Non-secure interrupts
• ID8-ID15 for Secure interrupts.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 2-25
ID072613 Non-Confidential

2 GIC Partitioning
2.3 CPU interfaces
2.3 CPU interfaces
Each CPU interface block provides the interface for a processor that is connected to the GIC. Each CPU interface
provides a programming interface for:
• enabling the signaling of interrupt requests to the processor
• acknowledging an interrupt
• indicating completion of the processing of an interrupt
• setting an interrupt priority mask for the processor
• defining the preemption policy for the processor
• determining the highest priority pending interrupt for the processor.

When enabled, a CPU interface takes the highest priority pending interrupt for its connected processor and
determines whether the interrupt has sufficient priority for it to signal the interrupt request to the processor. To
determine whether to signal the interrupt request to the processor, the CPU interface considers the interrupt priority
mask and the preemption settings for the processor. At any time, the connected processor can read the priority of its
highest priority active interrupt from its GICC_HPPIR, a CPU interface register.

The mechanism for signaling an interrupt to the processor is IMPLEMENTATION DEFINED.

Note
 On ARM processor implementations, the traditional mechanism for signaling an interrupt request is by asserting
nIRQ or nFIQ.

The processor acknowledges the interrupt request by reading the CPU interface Interrupt Acknowledge Register.
This read returns one of:

• The ID number of the highest priority pending interrupt, if that interrupt is of sufficient priority for it to be
signaled to the processor. This is the normal response to an interrupt acknowledge.

• Exceptionally, an ID number that indicates a spurious interrupt.

When the processor acknowledges the interrupt at the CPU interface, the Distributor changes the status of the
interrupt from pending to either active, or active and pending. At this point the CPU interface can signal another
interrupt to the processor, to preempt interrupts that are active on the processor. If there is no pending interrupt with
sufficient priority for signaling to the processor, the interface deasserts the interrupt request signal to the processor.

When the interrupt handler on the processor has completed the processing of an interrupt, it writes to the CPU
interface to indicate interrupt completion. There are two stages to interrupt completion:

• priority drop, meaning the priority of the processed interrupt can no longer prevent the signaling of another
interrupt to the processor

• interrupt deactivation, meaning the Distributor removes the active state of the interrupt.

In a GICv1 implementation, these two stages always happen together, when the processor writes to the CPU
interface End of Interrupt register.

In a GICv2 implementation, the GICC_CTLR.EOImode bit determines whether:

• the two stages happen together, when the processor writes to the CPU interface End of Interrupt register

• the two stages are separated, so that:

— priority drop happens when the processor writes to the CPU interface End of Interrupt register

— interrupt deactivation happens later, when the processor writes to the CPU interface Deactivate
Interrupt register.

For more information, see Priority drop and interrupt deactivation on page 3-38.
2-26 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

2 GIC Partitioning
2.3 CPU interfaces
2.3.1 Interrupt signal bypass, and GICv2 bypass disable

In all GIC implementations, a CPU interface optionally includes interrupt signal bypass, so that, when the signaling
of an interrupt by the interface is disabled, a system legacy interrupt signal is passed to the interrupt request input
on the processor, bypassing the GIC functionality.

Figure 2-2 shows the implementation of interrupt signal bypass on a GICv1 implementation that does not include
the GIC Security Extensions.

Figure 2-2 Interrupt signal bypass, GICv1 without Security Extensions

Figure 2-2 shows the simplest implementation of interrupt signal bypass. In other GIC implementations, interrupt
signal bypass is more complicated:

• A GICv1 implementation that includes the GIC Security Extensions supports interrupt grouping, and the use
of FIQ interrupts to signal Group 0 interrupts. Interrupt bypass, GICv1 with GIC Security Extensions
describes the implementation of interrupt bypass on such an implementation.

• If a GICv2 implementation interrupt supports signal bypass, it uses the same model as a GICv1
implementation that includes the GIC Security Extensions, but must also provide disable bits for the interrupt
signal bypass operation. For more information see GICv2 interrupt bypass, with bypass disable on page 2-28.

Note
 Many ARM processors, including processors that implement the ARMv7-A or ARMv7-R architecture profiles,
implement two active-LOW interrupt request signals, nIRQ and nFIQ. However, this GIC architecture
specification describes only the logic of the interrupt request signals, not the physical signaling of interrupts to a
connected processor. Therefore, it describes two active-HIGH interrupt requests, IRQ and FIQ.

Interrupt bypass, GICv1 with GIC Security Extensions

When a GIC implementation supports interrupt grouping, a CPU interface can provide two interrupt exception
request outputs, IRQ and FIQ. It always uses the IRQ output to signal Group 1 interrupts, but can use the FIQ output
to signal Group 0 interrupts. In such an implementation, the CPU interface can include interrupt signal bypass for
both interrupt signals. For this case, Table 2-1 on page 2-28 shows how GICC_CTLR controls the GIC interrupt
outputs.

CPU interface

1

0

GIC

Legacy
Interrupt signal

Interrupt request
to processor

Enable
Control bit in GICC_CTLR

Interrupt request,
prioritization and

filtering not shown
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 2-27
ID072613 Non-Confidential

2 GIC Partitioning
2.3 CPU interfaces
For such an implementation, Figure 2-3 shows the signaling of the Group 0 and Group 1 interrupts.

Figure 2-3 GICv1 Group 0 and Group 1 interrupt signaling, with interrupt signal bypass

GICv2 interrupt bypass, with bypass disable

When a CPU interface in a GICv2 implementation includes interrupt signal bypass, it:

• implements the bypass scheme described in Interrupt bypass, GICv1 with GIC Security Extensions on
page 2-27

• in addition, must implement GICC_CTLR control bits that disable the interrupt signal bypass functionality.

Table 2-1 Interrupt signal bypass behavior, GICv1 with Security Extensions

GICC_CTLR register bits GIC interrupt outputs

FIQEn EnableGrp0 EnableGrp1 IRQ request behavior FIQ request behavior

0 0 0 Bypass Bypass

1 Driven by GIC CPU interface Bypass

1 0 Driven by GIC CPU interface Bypass

1 Driven by GIC CPU interface Bypass

1 0 0 Bypass Bypass

1 Driven by GIC CPU interface Bypass

1 0 Bypass Driven by GIC CPU interface

1 Driven by GIC CPU interface Driven by GIC CPU interface

CPU interface

1

0

GIC

Interrupt
requests to
processor

FIQEn EnableGrp0 EnableGrp1

1

0

Interrupt requests,
prioritization and

filtering not shown Group 1

Group 0

Control bits in GICC_CTLR

Legacy
interrupt
signals IRQ

FIQ

IRQ

FIQ

A

B

A B See GICv2 description
2-28 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

2 GIC Partitioning
2.3 CPU interfaces
When not being driven by the CPU interface, each interrupt output signal can be deasserted rather than being driven
by the legacy interrupt input. This behavior is controlled by the GICC_CTLR bypass disable bits:
• FIQBypDisGrp0
• FIQBypDisGrp1
• IRQBypDisGrp0
• IRQBypDisGrp1.

Figure 2-4 shows the control logic of the signaling of interrupts by a CPU interface. Power management, GIC v2
on page 2-31 gives more information about the wakeup event signals shown in Figure 2-4.

Figure 2-4 GICv2 interrupt bypass logic, with bypass disable

Exception generation pseudocode on page 3-64 also describes this interrupt signaling.

Table 2-2 on page 2-30 shows how, when a CPU interface might signal an IRQ request to a connected processor,
bits in GICC_CTLR, and whether the IRQ request is Group 0 or Group 1, determine the IRQ signaling by the
interface. In the IRQ request signaling behavior column of this table:

Bypass Indicates that the IRQ signal to the processor is driven by the legacy IRQ signal.

Deasserted Indicates that the IRQ signal to the processor is deasserted.

Driven by GIC Indicates that the IRQ signal to the processor is driven by the GIC CPU interface logic.

B

Interrupt request

A

B

A is the inverse of

is the inverse of

A

B

in the GICv1 implementation that supports interrupt grouping

in the GICv1 implementation that supports interrupt grouping

† Values of n and x correspond to the requested interrupt

(GICD_IGROUPRn[x]†)

GICC_CTLR.FIQEn

0

1
GICC_CTLR.EnableGrp0

GICC_CTLR.FIQBypDisGrp1

GICC_CTLR.FIQBypDisGrp0

Legacy FIQ signal

0

1

GICC_CTLR.EnableGrp1

GICC_CTLR.IRQBypDisGrp0

GICC_CTLR.IRQBypDisGrp1

Legacy IRQ signal

IRQ signal to processor

FIQ signal to processor

FIQ signal for wakeup event

IRQ signal for wakeup event
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 2-29
ID072613 Non-Confidential

2 GIC Partitioning
2.3 CPU interfaces
Table 2-3 shows how, when a CPU interface might signal an FIQ request to a connected processor, bits in
GICC_CTLR the FIQ signaling by the interface:

Table 2-2 IRQ request behavior, GICv2

GICC_CTLR register bits IRQ for
signaling

IRQ request signaling
behaviorEnableGrp1 EnableGrp0 FIQEn IRQBypDisGrp1 IRQBypDisGrp0

0 0 0 0 x x Bypass

0 0 0 1 x x Deasserted

0 0 1 0 x x Bypass

0 0 1 1 0 x Bypass

0 0 1 1 1 x Deasserted

0 1 0 x x Group 0 Driven by GIC

0 1 0 x x Group 1 Deasserted

0 1 1 0 x x Bypass

0 1 1 1 0 x Bypass

0 1 1 1 1 x Deasserted

1 0 x x x Group 0 Deasserted

1 0 x x x Group 1 Driven by GIC

1 1 0 x x x Driven by GIC

1 1 1 x x Group 0 Deasserted

1 1 1 x x Group 1 Driven by GIC

Table 2-3 FIQ request behavior, GICv2

GICC_CTLR register bits
FIQ request signaling behavior

EnableGrp0 FIQEn FIQBypDisGrp0 FIQBypDisGrp1

0 0 0 x Bypass, driven by legacy FIQ signal

0 0 1 0 Bypass, driven by legacy FIQ signal

0 0 1 1 FIQ interrupt output deasserted

0 1 0 x Bypass, driven by legacy FIQ signal

0 1 1 x FIQ interrupt output deasserted

1 0 0 x Bypass, driven by legacy FIQ signal

1 0 1 0 Bypass, driven by legacy FIQ signal

1 0 1 1 FIQ interrupt output deasserted

1 1 x x Driven by GIC CPU interface
2-30 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

2 GIC Partitioning
2.3 CPU interfaces
2.3.2 Power management, GIC v2

The GICv2 architecture supports wakeup events in implementations that require power management.

As shown in Figure 2-4 on page 2-29, the GICv2 interrupt bypass logic described in GICv2 interrupt bypass, with
bypass disable on page 2-28 includes signals that can be used as wakeup signals to a system power controller. These
signals are available even when both interrupt signaling by the GIC, and interrupt bypass, are disabled.

In addition, the GICC_APRn registers provide support for preserving and restoring state in power-management
applications. However, to ensure that Non-secure accesses do not interfere with Secure operation, Secure and
Non-secure copies of these registers are provided.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 2-31
ID072613 Non-Confidential

2 GIC Partitioning
2.3 CPU interfaces
2-32 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

Chapter 3
Interrupt Handling and Prioritization

This chapter describes the requirements for interrupt handling and prioritization in the GIC. It contains the following
sections:
• About interrupt handling and prioritization on page 3-34
• General handling of interrupts on page 3-37
• Interrupt prioritization on page 3-44
• The effect of interrupt grouping on interrupt handling on page 3-48
• Interrupt grouping and interrupt prioritization on page 3-53
• Additional features of the GIC Security Extensions on page 3-59
• Pseudocode details of interrupt handling and prioritization on page 3-61
• The effect of the Virtualization Extensions on interrupt handling on page 3-67
• Example GIC usage models on page 3-68.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 3-33
ID072613 Non-Confidential

3 Interrupt Handling and Prioritization
3.1 About interrupt handling and prioritization
3.1 About interrupt handling and prioritization
The following subsections give more information about the interrupts supported by a GIC, and how a connected
processor must determine the range of interrupt IDs supported by the GIC:
• Handling different interrupt types in a multiprocessor system on page 3-35
• Identifying the supported interrupts on page 3-35.

The remainder of the chapter describes interrupt handling and prioritization.

Interrupt handling describes:
• how the GIC recognizes interrupts
• how software can program the GIC to configure and control interrupts
• the state machine the GIC maintains for each interrupt on each CPU interface
• how the exception model of a processor interacts with the GIC.

Prioritization describes:
• the configuration and control of interrupt priority
• the order of execution of pending interrupts
• the determination of when interrupts are visible to a target processor, including:

— interrupt priority masking
— priority grouping
— preemption of an active interrupt.

The following sections describe interrupt handling and prioritization:
• General handling of interrupts on page 3-37
• Interrupt prioritization on page 3-44.

The GIC architecture supports uniprocessor and multiprocessor systems:
• in a uniprocessor system the GIC has a single processor interface, the CPU interface
• in a multiprocessor system the GIC has a CPU interface for each connected processor.

In either a uniprocessor or a multiprocessor system, a GIC implementation can include the GIC Security Extensions.
The GIC Security Extensions:

• recognize that a connected processor that implements the ARM Security Extensions makes either Secure
accesses or Non-secure accesses to the GIC registers

• implement the GIC registers to take account of Secure and Non-secure accesses, so that:
— some registers are banked, to provide separate Secure and Non-secure copies
— some registers are Secure, meaning they are only accessible using Secure accesses
— the remaining registers are Common, meaning they are accessible by Secure and Non-secure accesses.

• use the GIC interrupt grouping feature to support the handling of Secure and Non-secure interrupts, in which
case:
— Group 0 interrupts are Secure interrupts
— Group 1 interrupts are Non-secure interrupts.

• in a multiprocessor system, might implement the GIC Security Extensions on only some of its CPU
interfaces.

Except for a GICv1 implementation that does not include the GIC Security Extensions, all implementations of the
GIC architecture support interrupt grouping. With interrupt grouping:

• by default, all interrupts are Group 0 interrupts, and are signaled to a connected processor using the IRQ
interrupt request

• each interrupt can be configured as Group 1 interrupt, or as a Group 0 interrupt

• a CPU interface can be configured to signal Group 0 interrupts to a connected processor using the FIQ
interrupt request.
3-34 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

3 Interrupt Handling and Prioritization
3.1 About interrupt handling and prioritization
Interrupt grouping, and the GIC Security Extensions, make interrupt handling and prioritization more complex. The
following sections describe the effect of interrupt grouping and the GIC Security Extensions:
• The effect of interrupt grouping on interrupt handling on page 3-48
• Interrupt grouping and interrupt prioritization on page 3-53.

3.1.1 Handling different interrupt types in a multiprocessor system

A GIC supports peripheral interrupts and software-generated interrupts, see Interrupt types on page 1-18.

In a multiprocessor implementation the GIC handles:
• software generated interrupts (SGIs) using the GIC N-N model
• peripheral (hardware) interrupts using the GIC 1-N model.

See Models for handling interrupts on page 1-19 for definitions of the two models.

3.1.2 Identifying the supported interrupts

The GIC architecture defines different ID values for the different types of interrupt, see Interrupt IDs on page 2-24.
However, there is no requirement for the GIC to implement a continuous block of interrupt IDs for any interrupt
type.

Note
 ARM strongly recommends that implemented interrupts are grouped to use the lowest ID numbers and as small a
range of interrupt IDs as possible, because this reduces the number of registers that must be implemented, and that
discovery routines must check.

To correctly handle interrupts, software must know what interrupt IDs are supported by the GIC. Software can use
the GICD_ISENABLERns to discover this information. If the processor implements the ARM Security Extensions,
Secure software determines the interrupts that are visible to Non-secure software. The Non-secure software must
know which interrupts it can see, and might use this discovery process to find this information.

GICD_ISENABLER0 provides the Set-enable bits for both:
• SGIs, using interrupt IDs 15-0, corresponding to register bits [15:0]
• PPIs, using interrupt IDs 31-16, corresponding to register bits [31:16].

The remaining GICD_ISENABLERns, from GICD_ISENABLER1, provide the Set-enable bits for the SPIs,
starting at interrupt ID 32.

If an interrupt is:
• not supported, the Set-enable bit corresponding to its interrupt ID is RAZ/WI
• supported and permanently enabled, the Set-enable bit corresponding to its interrupt ID is RAO/WI.

Software discovers the interrupts that are supported by:

1. Reading the GICD_TYPER. The GICD_TYPER.ITLinesNumber field identifies the number of implemented
GICD_ISENABLERns, and therefore the maximum number of SPIs that might be supported.

2. Writing to the GICD_CTLR to disable forwarding of interrupts from the distributor to the CPU interfaces.
For more information, see Enabling and disabling the Distributor and CPU interfaces on page 4-77.

3. For each implemented GICD_ISENABLERn, starting with GICD_ISENABLER0:
• Writing 0xFFFFFFFF to the GICD_ISENABLERn.
• Reading the value of the GICD_ISENABLERn. Bits that read as 1 correspond to supported interrupt

IDs.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 3-35
ID072613 Non-Confidential

3 Interrupt Handling and Prioritization
3.1 About interrupt handling and prioritization
Software uses the GICD_ICENABLERns to discover the interrupts that are permanently enabled. For each
implemented GICD_ICENABLERn, starting with GICD_ICENABLER0, software:

1. Writes 0xFFFFFFFF to the GICD_ICENABLERn. This disables all interrupts that can be disabled.

2. Reads the value of the GICD_ICENABLERn. Bits that read as 1 correspond to interrupts that are
permanently enabled.

3. Writes 1 to any GICD_ISENABLERn bits corresponding to interrupts that must be re-enabled.

The GIC implements the same number of GICD_ISENABLERns and GICD_ICENABLERns.

When software has completed its discovery, it typically writes to the GICD_CTLR to re-enable forwarding of
interrupts from the Distributor to the CPU interfaces.

If the GIC implements the GIC Security Extensions, software can use Secure accesses to discover all the supported
interrupt IDs, see The effect of interrupt grouping on interrupt handling on page 3-48 for more information.

Software using Non-secure accesses can discover and control only the interrupts that are configured as Non-secure.

If Secure software changes the security configuration of any interrupts after Non-secure software has discovered its
supported interrupts, it must communicate the effect of those changes to the Non-secure software.

In a GIC that provides interrupt grouping, software can:

• write to the GICD_IGROUPRn registers, to configure interrupts as Group 0 or Group 1

• control the forwarding of Group 0 and Group 1 interrupts independently, using the GICD_CTLR.EnableGrp0
and GICD_CTLR.EnableGrp1 bits.
3-36 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

3 Interrupt Handling and Prioritization
3.2 General handling of interrupts
3.2 General handling of interrupts
The Distributor maintains a state machine for each supported interrupt on each CPU interface. Interrupt handling
state machine on page 3-41 describes this state machine and its state transitions. The possible states of an interrupt
are:
• inactive
• pending
• active
• active and pending.

Note
 • This section gives an overview of the handling of interrupts in a GIC implementation that does not include

the GIC Security Extensions. It does not give a full description of handling grouped interrupts. Interrupt
grouping, and the GIC Security Extensions, extend the basic model of GIC operation described in this
section. For more information see The effect of interrupt grouping on interrupt handling on page 3-48.

• This basic model of interrupt handling also applies to the handling of virtual interrupts in an implementation
that includes the GIC Virtualization Extensions. For more information, see Chapter 5 GIC Support for
Virtualization.

When the GIC recognizes an interrupt request, it marks its state as pending. Regenerating a pending interrupt does
not affect the state of the interrupt.

The GIC interrupt handling sequence is:

1. The GIC determines the interrupts that are enabled.

2. For each pending interrupt, the GIC determines the targeted processor or processors.

3. For each CPU interface, the Distributor forwards the highest priority pending interrupt that targets that
interface.

4. Each CPU interface determines whether to signal an interrupt request to its processor, and if required, does so.

5. The processor acknowledges the interrupt, and the GIC returns the interrupt ID and updates the interrupt
state.

6. After processing the interrupt, the processor signals End of Interrupt (EOI) to the GIC.

In more detail, these steps are as follows:

1. The GIC determines whether each interrupt is enabled. An interrupt that is not enabled has no effect on the
GIC.

2. For each enabled interrupt that is pending, the Distributor determines the targeted processor or processors.

3. For each processor, the Distributor determines the highest priority pending interrupt, based on the priority
information it holds for each interrupt, and forwards the interrupt to the targeted CPU interfaces.

4. If the distributor is forwarding an interrupt request to a CPU interface, the CPU interface determines whether
the interrupt has Sufficient priority to be signaled to the processor. If the interrupt has sufficient priority, the
GIC signals an interrupt request to the processor.

5. When a processor takes the interrupt exception, it reads the GICC_IAR of its CPU interface to acknowledge
the interrupt. This read returns an Interrupt ID, and for an SGI, the source processor ID, that the processor
uses to select the correct interrupt handler. When it recognizes this read, the GIC changes the state of the
interrupt as follows:

• if the pending state of the interrupt persists when the interrupt becomes active, or if the interrupt is
generated again, from pending to active and pending.

• otherwise, from pending to active
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 3-37
ID072613 Non-Confidential

3 Interrupt Handling and Prioritization
3.2 General handling of interrupts
Note
 • A level-sensitive peripheral interrupt persists when it is acknowledged by the processor, because the

interrupt signal to the GIC remains asserted until the Interrupt Service Routine (ISR) running on the
processor accesses the peripheral asserting the signal.

• In a multiprocessor implementation, the GIC handles:

— PPIs and SGIs using the GIC N-N model, where the acknowledgement of an interrupt by one
processor has no effect on the state of the interrupt on other CPU interfaces

— SPIs using the GIC 1-N model, where the acknowledgement of an interrupt by one processor
removes the pending status of the interrupt on any other targeted processors, see Implications
of the 1-N model on page 3-41.

• In GICv2, when using a software model with the GICC_CTLR.AckCtl bit set to 0, separate registers
are used to manage Group 0 and Group 1 interrupts, as follows:
— GICC_IAR, GICC_EOIR, and GICC_HPPIR for Group 0 interrupts
— GICC_AIAR, GICC_AEOIR, and GICC_AHPPIR for Group 1 interrupts.
ARM deprecates the use of GICC_CTLR.AckCtl, and strongly recommends using a software model
where GICC_CTLR.AckCtl is set to 0, see The effect of interrupt grouping on interrupt
acknowledgement on page 3-50.

6. When the processor has completed handling the interrupt, it must signal this completion to the GIC. As
described in Priority drop and interrupt deactivation, this:
• always requires a valid write to an end of interrupt register (EOIR)
• might also require a subsequent write to the deactivate interrupt register, GICC_DIR.

For each CPU interface, the GIC architecture requires the order of the valid writes to an EOIR to be the
reverse of the order of the reads from the GICC_IAR or GICC_AIAR, so that each valid EOIR write refers
to the most recent interrupt acknowledge.

If, after the EOIR write, there is no pending interrupt of Sufficient priority, the CPU interface deasserts the
interrupt exception request to the processor.

A CPU interface never signals to the connected processor any interrupt that is active and pending. It only
signals interrupts that are pending and have sufficient priority:

• For PPIs and SGIs, the active status of particular interrupt ID is banked between CPU interfaces. This
means that if a particular interrupt ID is active or active and pending on a CPU interface, then no
interrupt with that same ID is signaled on that CPU interface.

• For SPIs, the active status of an interrupt is common to all CPU interfaces. This means that if an
interrupt is active or active and pending on one CPU interface then it is not signaled on any CPU
interface.

For more information about the steps in this process see:
• Priority drop and interrupt deactivation
• Interrupt prioritization on page 3-44
• The effect of interrupt grouping on interrupt handling on page 3-48
• Interrupt grouping and interrupt prioritization on page 3-53.

3.2.1 Priority drop and interrupt deactivation

When a processor completes the processing of an interrupt, it must signal this completion to the GIC. Interrupt
completion requires the following changes to the GIC state:

Priority drop Priority drop is the drop in the Running priority that occurs on a valid write to an EOIR, either the
GICC_EOIR or the GICC_AEOIR. A valid write is a write that is not UNPREDICTABLE, is not
ignored, and is not writing an interrupt ID value greater than 1019.

On priority drop, the running priority is reduced from the priority of the interrupt referenced by the
EOIR write to either:
• the priority of the highest-priority active interrupt for which there has been no EOIR write
3-38 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

3 Interrupt Handling and Prioritization
3.2 General handling of interrupts
• the Idle priority, if there is no active interrupt for which there has been no EOIR write.

See Preemption on page 3-45 for more information about running priority.

Interrupt deactivation

Interrupt deactivation is the change of the state of an interrupt, either:
• from active and pending, to pending
• from active, to idle.

On a GICv1 implementation, and on a GICv2 implementation when GICC_CTLR.EOImode is set
to 0, a valid EOIR write also deactivates the interrupt it references.

On a GICv2 implementation, setting GICC_CTLR.EOImode to 1 separates the priority drop and interrupt
deactivation operations, and interrupt handling software must:
1. Perform a valid EOIR write, to cause priority drop on the GIC CPU interface.
2. Subsequently, write to the GICC_DIR, to deactivate the interrupt.

The GIC architecture specification requires that valid EOIR writes are ordered, so that:
• a valid GICC_EOIR write corresponds to the most recently acknowledged interrupt
• a valid GICC_AEOIR write corresponds to the most recently acknowledged Group 1 interrupt.
• whether a GICC_EOIR write affects Group 0 or Group 1 interrupts depends on both:

— the value of the GICC_CTLR. AckCtl bit
— if the GIC implements the GIC Security Extensions, whether the write is Secure or Non-secure.

Note
 In a GICv2 implementation that includes the Security Extensions:
• GICC_AEOIR is an alias of the Non-secure copy of GICC_EOIR
• GICC_AIAR is an alias of the Non-secure copy of GICC_IAR
• GICC_AIAR and GICC_AEOIR are Secure registers, meaning they are accessible only by Secure accesses.

There is no ordering requirement for GICC_DIR writes. However, the effect is UNPREDICTABLE if software writes
to GICC_DIR when:

• GICC_CTLR.EOImode is set to 0

• GICC_CTLR.EOImode is set to 1 and there has not been a corresponding write to GICC_EOIR or
GICC_AEOIR.

When virtualizing physical interrupts, ARM recommends that, for each CPU interface that corresponds to a
processor running virtual machines:
• GICC_CTLR.EOImode bit is set to 1
• if the GIC implements the GIC Security Extensions, the GICC_CTLR.EOImodeNS bit is set to 1

See Completion of virtualized physical interrupts on page 5-161 for more information.

3.2.2 Interrupt controls in the GIC

The following sections describe the interrupt controls in the GIC:
• Interrupt enables
• Setting and clearing pending state of an interrupt on page 3-40
• Finding the active or pending state of an interrupt on page 3-40
• Generating an SGI on page 3-40.

Interrupt enables

For peripheral interrupts, a processor:
• enables an interrupt by writing to the appropriate GICD_ISENABLERn bit
• disables an interrupt by writing to the appropriate GICD_ICENABLERn bit.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 3-39
ID072613 Non-Confidential

3 Interrupt Handling and Prioritization
3.2 General handling of interrupts
Whether SGIs are permanently enabled, or can be enabled and disabled by writes to the GICD_ISENABLERn and
GICD_ICENABLERn, is IMPLEMENTATION DEFINED.

Writes to the GICD_ISENABLERns and GICD_ICENABLERns control whether the Distributor forwards specific
interrupts to the CPU interfaces. Disabling an interrupt by writing to the appropriate GICD_ICENABLERn does
not prevent that interrupt from changing state, for example becoming pending.

Setting and clearing pending state of an interrupt

For peripheral interrupts, a processor can:
• set the pending state by writing to the appropriate GICD_ISPENDRn bit
• clear the pending state by writing to the appropriate GICD_ICPENDRn bit.

For a level-sensitive interrupt:

• If the hardware signal of an interrupt is asserted when a processor writes to the corresponding
GICD_ICPENDRn bit then the write to the register has no effect on the pending state of the interrupt.

• If a processor writes a 1 to an GICD_ISPENDRn bit then the corresponding interrupt becomes pending
regardless of the state of the hardware signal of that interrupt, and remains pending regardless of the assertion
or deassertion of the signal.

For more information about the control of the pending state of a level-sensitive interrupt see Control of the pending
status of level-sensitive interrupts on page 4-100.

For SGIs, the GIC ignores writes to the corresponding GICD_ISPENDRn and GICD_ICPENDRn bits. A processor
cannot change the state of a software-generated interrupt by writing to these registers. Typically, an SGI is made
pending by writing to the GICD_SGIR. In GICv2, the pending state of SGIs can also be modified directly using the
GICD_SPENDSGIRn and GICD_CPENDSGIRn bits.

Finding the active or pending state of an interrupt

A processor can find:

• the pending state of an interrupt by reading the corresponding GICD_ISPENDRn or GICD_ICPENDRn bit

• the active state of an interrupt by reading the corresponding GICD_ISACTIVERn or GICD_ICACTIVERn
bit.

The corresponding register bit is 1 if the interrupt is pending or active. If an interrupt is pending and active the
corresponding bit is 1 in both registers.

When preserving or restoring GIC state, a processor must take account of the pending and active state of all
interrupts. For more information see Preserving and restoring GIC state on page 4-155.

For an SGI, the corresponding GICD_ISPENDRn and GICD_ICPENDRn bits RAO if there is a pending interrupt
from at least one generating processor that targets the processor reading the GICD_ISPENDRn or
GICD_ICPENDRn. In GICv2, the processor that issues the SGI can also be determined by reading the
corresponding GICD_SPENDSGIRn or GICD_CPENDSGIRn bits.

Generating an SGI

A processor generates an SGI by writing to an GICD_SGIR. An SGI can target multiple processors, and the
GICD_SGIR write specifies the target processor list. The GICD_SGIR includes optimization for:
• interrupting only the processor that writes to the GICD_SGIR
• interrupting all processors other than the one that writes to the GICD_SGIR.

SGIs from different processors use the same interrupt IDs. Therefore, any target processor can receive SGIs with
the same interrupt ID from different processors. However, the pending states of any two SGIs are independent if
any of the following are different:
• interrupt ID
• source processor
3-40 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

3 Interrupt Handling and Prioritization
3.2 General handling of interrupts
• target processor.

Only one interrupt with a specific interrupt ID can be active on a CPU interface at any time. This means that a CPU
interface cannot have two SGIs with the same interrupt ID active at the same time, even if different processors have
signaled SGIs with the same interrupt ID to that processor.

On the CPU interface of the target processor, reading the GICC_IAR for an SGI returns both the interrupt ID and
the CPU ID of the processor that generated the interrupt, the source processor for the interrupt. The combination of
interrupt ID and source CPU ID uniquely identifies the interrupt to the target processor.

In a multiprocessor implementation, the interrupt priority of each SGI interrupt ID is defined independently for each
target processor, see Interrupt Priority Registers, GICD_IPRIORITYRn on page 4-104. For each CPU interface, all
SGIs with a particular interrupt ID that are pending on that interface have the same priority and must be handled
serially. The order in which the CPU interface serializes these SGIs is IMPLEMENTATION SPECIFIC.

3.2.3 Implications of the 1-N model

In a multiprocessor implementation, the GIC uses the GIC 1-N model, described in Models for handling interrupts
on page 1-19, to handle peripheral interrupts that target more than one processor, that is, SPIs. This means that when
the GIC recognizes an interrupt acknowledge from one of the target processors it clears the pending state of the
interrupt on all the other targeted processors. A GIC implementation must ensure that any interrupt being handled
using the 1-N model is only acknowledged by one CPU interface, and that all other interfaces return a spurious
interrupt ID.

When multiple target processors attempt to acknowledge the interrupt, the following can occur:

• A processor reads the GICC_IAR and obtains the interrupt ID of the interrupt to be serviced.

Note
 In GICv1, more than one target processor might have obtained this interrupt ID, if the processors read their

GICC_IAR registers at very similar times. The system might require software on the target processors to
ensure that only one processor runs its interrupt service routine. A typical mechanism to achieve this is
implementing, in shared memory, a lock on the interrupt service routine (ISR).

• A processor reads the GICC_IAR and obtains the interrupt ID 1023, indicating a spurious interrupt. The
processor can return from its interrupt service routine without writing to its GICC_EOIR.

The spurious interrupt ID indicates that the original interrupt is no longer pending, typically because another
target processor is handling it.

Note
 • A GICv1 implementation might ensure that only one processor can make a 1-N interrupt active, removing

the requirement for a lock on the ISR. This is not required by the architecture, and generic GIC code must
not rely on this behavior.

• For any processor, if an interrupt is active and pending, the GIC does not signal an interrupt exception request
for the interrupt to any processor until the active status is cleared.

3.2.4 Interrupt handling state machine

The GIC maintains a state machine for each supported interrupt on each CPU interface. Figure 3-1 on page 3-42
shows an instance of this state machine, and the possible state transitions.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 3-41
ID072613 Non-Confidential

3 Interrupt Handling and Prioritization
3.2 General handling of interrupts
Figure 3-1 Interrupt handling state machine

Note
 • SGIs are generated only by writes to GICD_SGIR or GICD_SPENDSGIRn. Peripheral interrupts are

generated by either the assertion of a hardware interrupt request signal to the GIC, or by a write to an
GICD_ISPENDRn.

• As described in Priority drop and interrupt deactivation on page 3-38:
— in a GICv1 implementation, priority drop is always associated with interrupt deactivation
— in a GICv2 implementation, priority drop can be separated from interrupt deactivation.

Figure 3-1 does not show possible separation of priority drop and interrupt deactivation. This happens within
the Active state.

When interrupt forwarding by the Distributor and interrupt signaling by the CPU interface are enabled, the
conditions that cause each of the state transitions are as follows:

Transition A1 or A2, add pending state

For an SGI, occurs if either:

• Software writes to a GICD_SGIR that specifies the processor as a target.

• Software on the target processor writes to the GICD_SPENDSGIRn bit that corresponds to
the required source processor and interrupt ID

Note
 If the GIC implements the GIC Security Extensions and the write to the GICD_SGIR is Secure, the

transition occurs only if the security configuration of the specified SGI, for the appropriate CPU
interface, corresponds to the GICD_SGIR.NSATT bit value.

For an SPI or PPI, occurs if either:
• a peripheral asserts an interrupt request signal
• software writes to an GICD_ISPENDRn.

Transition B1 or B2, remove pending state

For an SGI, occurs if software on the target processor writes to the relevant bit of the
GICD_CPENDSGIRn.

For an SPI or PPI, occurs if either:

• the level-sensitive interrupt is pending only because of the assertion of an input signal, and
that signal is deasserted

• the interrupt is pending only because of the assertion of an edge-triggered interrupt signal, or
a write to an GICD_ISPENDRn, and software writes to the corresponding
GICD_ICPENDRn.

Inactive Pending

Active

Active and
pending

B2A2
E2

D

C

E1

B1

A1
3-42 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

3 Interrupt Handling and Prioritization
3.2 General handling of interrupts
Transition C, pending to active

If the interrupt is enabled and of Sufficient priority to be signaled to the processor, occurs when
software reads from the GICC_IAR.

Transition D, pending to active and pending

For an SGI, this transition occurs in either of the following circumstances:

• If a write to set the SGI state to pending occurs at approximately the same time as a read of
GICC_IAR.

• When two or more pending SGIs with the same interrupt ID originate from the same source
processor and target the same processor. If one of the SGIs follows transition C, the other
SGIs follow transition D

For an SPI or PPI this transition occurs if all the following apply:

• The interrupt is enabled.

• Software reads from the GICC_IAR. This read adds the active state to the interrupt.

• In addition, one of the following conditions applies:

— For a level-sensitive interrupt, the interrupt signal remains asserted. This is usually the
case, because the peripheral does not deassert the interrupt until the processor has
serviced the interrupt.

— For an edge-triggered interrupt, whether this transition occurs depends on the timing
of the read of the GICC_IAR relative to the detection of the reassertion of the interrupt.
Otherwise the read of the GICC_IAR causes transition C, possibly followed by
transition A2.

Transition E1 or E2, remove active state

Occurs when software deactivates an interrupt by writing to either GICC_EOIR or GICC_DIR. For
more information see Priority drop and interrupt deactivation on page 3-38. In a GIC
implementation the includes the Virtualization Extensions, also occurs if the virtual CPU interface
signals that the corresponding physical interrupt has been deactivated.

3.2.5 Special interrupt numbers

The GIC architecture reserves interrupt ID numbers 1020-1023 for special purposes. In a GICv1 implementation
that does not implement the GIC Security Extensions, the only one of these used is ID 1023. This value is returned
to a processor, in response to an interrupt acknowledge, if there is no pending interrupt with sufficient priority for
it to be signaled to the processor. It is described as a response to a spurious interrupt.

Note
 A race condition can cause a spurious interrupt. For example, a spurious interrupt can occur if a processor writes a
1 to a field in an GICD_ICENABLERn that corresponds to a pending interrupt after the CPU interface has signaled
the interrupt to the processor and the processor has recognized the interrupt, but before the processor has read from
the GICC_IAR.

For more information about the special interrupt numbers see Special interrupt numbers when a GIC supports
interrupt grouping on page 3-50.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 3-43
ID072613 Non-Confidential

3 Interrupt Handling and Prioritization
3.3 Interrupt prioritization
3.3 Interrupt prioritization
This section describes interrupt prioritization in the GIC architecture. It includes the following subsections:
• Preemption on page 3-45
• Priority masking on page 3-45
• Priority grouping on page 3-45
• Interrupt generation on page 3-47.

Note
 This section describes an implementation that is not using interrupt grouping, and does not include the GIC Security
Extensions. Interrupt grouping, and the GIC Security Extensions, extend this basic model of GIC interrupt
prioritization. For more information, see Interrupt grouping and interrupt prioritization on page 3-53.

Software configures interrupt prioritization in the GIC by assigning a priority value to each interrupt source. Priority
values are 8-bit unsigned binary. A GIC supports a minimum of 16 and a maximum of 256 priority levels. If the
GIC implements fewer than 256 priority levels, low-order bits of the priority fields are RAZ/WI. This means that
the number of implemented priority field bits is IMPLEMENTATION DEFINED in the range 4-8, as Table 3-1 shows.

In the GIC prioritization scheme, lower numbers have higher priority, that is, the lower the assigned priority value
the higher the priority of the interrupt. Priority field value 0 always indicates the highest possible interrupt priority,
and the lowest priority value depends on the number of implemented priority levels, as Table 3-1 shows.

The GICD_IPRIORITYRn registers hold the priority value for each supported interrupt. An implementation might
reserve an interrupt for a particular purpose and assign a fixed priority to that interrupt, meaning the priority value
for that interrupt is read-only. For other interrupts, software writes to the GICD_IPRIORITYRn registers to set the
interrupt priorities. It is IMPLEMENTATION DEFINED whether a write to GICD_IPRIORITYRn changes the priority
of any active interrupt.

To determine the number of priority bits implemented, software can write 0xFF to a writable GICD_IPRIORITYRn
priority field, and read back the value stored.

Note
 ARM recommends that, before checking the priority range in this way:
• for a peripheral interrupt, software first disables the interrupt
• for an SGI, software first checks that the interrupt is inactive.

If, on a particular CPU interface, multiple pending interrupts have the same priority, and have Sufficient priority for
the interface to signal them to the processor, it is IMPLEMENTATION SPECIFIC how the interface selects which
interrupt to signal.

When an interrupt is active on a CPU interface, the GIC might signal a higher-priority interrupt on that CPU
interface, see Preemption on page 3-45.

Table 3-1 Effect of not implementing some priority field bits

Implemented priority bits Possible priority field values Number of priority levels

[7:0] 0x00-0xFF (0-255), all values 256

[7:1] 0x00-0xFE, (0-254), even values only 128

[7:2] 0x00-0xFC (0-252), in steps of 4 64

[7:3] 0x00-0xF8 (0-248), in steps of 8 32

[7:4] 0x00-0xF0 (0-240), in steps of 16 16
3-44 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

3 Interrupt Handling and Prioritization
3.3 Interrupt prioritization
3.3.1 Preemption

A CPU interface supports signaling of higher priority pending interrupts to a target processor before an active
interrupt completes. A pending interrupt is only signaled if both:
• Its priority is higher than the priority mask for that CPU interface, see Priority masking.
• Its group priority is higher than that of the Running priority on the CPU interface, see Priority grouping and

Running Priority Register, GICC_RPR on page 4-142.

Preemption occurs at the time when the processor acknowledges the new interrupt, and starts to service it in
preference to the previously active interrupt or the currently running process. When this occurs, the initial active
interrupt is said to have been preempted. Starting to service an interrupt while another interrupt is still active is
sometimes described as interrupt nesting.

Note
 • For a processor that complies with the ARM architecture:

— The value of the I or F bit in the CPSR determines whether the processor responds to the signaled
interrupt by starting the interrupt acknowledge procedure.

— When processing a preempting interrupt, the processor must save and later restore the context of the
previously active ISR.

For more information, see the ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition.

• Priority drop means the priority of an interrupt no longer affects the Running priority on the CPU interface,
and therefore does not prevent interrupt preemption. In GICv1 implementations, priority drop happens only
when an interrupt is deactivated, but in GICv2 implementations, priority drop and interrupt deactivation can
be separated. For more information see Priority drop and interrupt deactivation on page 3-38.

3.3.2 Priority masking

The GICC_PMR for a CPU interface defines a priority threshold for the target processor. The GIC only signals
pending interrupts with a higher priority than this threshold value to the target processor. A value of zero, the register
reset value, masks all interrupts from being signaled to the associated processor. The GIC does not use priority
grouping when comparing the priority of a pending interrupt with the priority threshold.

The GIC always masks an interrupt that has the largest supported priority field value. This provides an additional
means of preventing an interrupt being signaled to any processor.

Note
 Writing 255 to the GICC_PMR always sets it to the largest supported priority field value. Table 3-1 on page 3-44
shows how the largest supported field value varies with the number of implemented priority bits.

3.3.3 Priority grouping

Priority grouping uses the Binary Point Register, GICC_BPR, to split a priority value into two fields, the group
priority and the subpriority. When determining preemption, all interrupts with the same group priority are
considered to have equal priority, regardless of the subpriority. This means that there can only be one interrupt active
at each group priority. The active group priority is also known as the Preemption level. For more information, see
Active Priorities Registers, GICC_APRn on page 4-149.

The GIC uses the group priority field to determine whether a pending interrupt has sufficient priority to preempt an
active interrupt, as follows:

• For a pending interrupt to preempt an active interrupt, its group priority must be higher than the group priority
of the active interrupt. That is, the value of the group priority field for the new interrupt must be less than the
value of the group priority field of the Running priority.

• If there are no active interrupts on the CPU interface, the highest priority pending interrupt can be signaled
to a processor, regardless of the group priority.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 3-45
ID072613 Non-Confidential

3 Interrupt Handling and Prioritization
3.3 Interrupt prioritization
In each case, the pending interrupt priority is compared with the priority mask, and the interrupt is signaled only if
it is not masked. For more information, see Priority masking on page 3-45.

The binary point field in the GICC_BPR controls the split of the priority bits into the two parts. This 3-bit field
specifies how many of the least significant bits of the 8-bit interrupt priority field are excluded from the group
priority field, as Table 3-2 shows.

The minimum binary point value supported is IMPLEMENTATION DEFINED in the range 0-3.

GICv1 implementations with the GIC Security Extensions and GICv2 implementations have two binary point
registers. The copy of the binary point register used to calculate priority grouping depends on whether the interrupt
is a Group 0 interrupt or a Group 1 interrupt, as defined by the GICD_IGROUPRn registers, and also on the value
of the GICC_CTLR.CBPR bit.

Table 3-2 shows which binary point register is used for different GIC implementations.

When the GICC_CTLR.CBPR bit is set to 1, software can configure the CPU interface to determine the priority
grouping for a Group 1 interrupt using the same binary point register as for a Group 0 interrupt.

Where multiple pending interrupts have the same group priority, the GIC uses the subpriority field to resolve the
priority within a group. Where two or more pending interrupts in a group have the same subpriority, how the GIC
selects between the interrupts is IMPLEMENTATION SPECIFIC.

Table 3-2 Priority grouping by binary point

Binary point value
Interrupt priority field [7:0]

Group priority field Subpriority field Field with binary point

0 [7:1] [0] ggggggg.s

1 [7:2] [1:0] gggggg.ss

2 [7:3] [2:0] ggggg.sss

3 [7:4] [3:0] gggg.ssss

4 [7:5] [4:0] ggg.sssss

5 [7:6] [5:0] gg.ssssss

6 [7] [6:0] g.sssssss

7 No preemption [7:0] .ssssssss

Table 3-3 Binary point register used to calculate priority grouping

GIC implementation
Condition

(Group 0 interrupt) || CBPR==1a (Group 1 interrupt) && CBPR==0

GICv1 without Security Extensionsb - -

GICv2 without Security Extensions GICC_BPR GICC_ABPR

GIC with Security Extensions Secure GICC_BPR Non-secure GICC_BPRc

a. GICC_CTLR.CBPR. Not implemented in a GICv1 implementation that does not include the Security Extensions.
b. A GICv1 implementation without Security Extensions has no interrupt grouping and only one binary point register, GICC_BPR,

that it always uses to determine the priority grouping.
c. For a GICv2 with Security Extensions, the GICC_ABPR and Non-secure GICC_BPR are aliases of the same register.
3-46 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

3 Interrupt Handling and Prioritization
3.3 Interrupt prioritization
3.3.4 Interrupt generation

The pseudocode in Exception generation pseudocode on page 3-64 describes the generation of interrupts by the
GIC.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 3-47
ID072613 Non-Confidential

3 Interrupt Handling and Prioritization
3.4 The effect of interrupt grouping on interrupt handling
3.4 The effect of interrupt grouping on interrupt handling
This section describes the effect of interrupt grouping and the GIC Security Extensions on interrupt handling.

A GICv1 implementation that includes the GIC Security Extensions, or any GICv2 implementation, provides two
interrupt output signals for IRQ and FIQ exception requests:
• The CPU interface always uses the IRQ exception request for Group 1 interrupts
• Software can configure the CPU interface to use either IRQ or FIQ exception requests for Group 0 interrupts.

At power-on, or after a reset, any GIC implementation is configured to use only a single interrupt output signal, as
described in GIC power on or reset configuration on page 3-51.

The remainder of this section describes a GIC that implements interrupt grouping, as follows:
• GIC interrupt grouping support
• Special interrupt numbers when a GIC supports interrupt grouping on page 3-50
• The effect of interrupt grouping on interrupt acknowledgement on page 3-50
• GIC power on or reset configuration on page 3-51.

3.4.1 GIC interrupt grouping support

Note
 In a GICv1 implementation, interrupt grouping is provided only as part of the GIC Security Extensions.

The GICD_IGROUPRn registers configure each interrupt as Group 0 or Group 1.

In a CPU interface, in a GICv2 implementation, the GICC_* alias registers can provide independent control of
Group 0 and Group 1 registers, as Table 3-4 shows.

In an implementation that includes the GIC Security Extensions, the alias registers:

• typically represent aliases of the Non-secure copy of the Group 0 registers, for example GICC_ABPR is an
alias of the Non-Secure copy of GICC_BPR

• are accessible only by Secure accesses.

Table 3-4 CPU interface control of Group 0 and Group 1 interrupts, GICv2

Function Register, Group 0 Register, Group 1

Binary pointa

a. See Table 3-3 on page 3-46 for more information.

GICC_BPR GICC_ABPR

Interrupt acknowledge GICC_IAR GICC_AIAR

EOI GICC_EOIR GICC_AEOIR

Highest priority pending interrupt GICC_HPPIR GICC_AHPPIR
3-48 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

3 Interrupt Handling and Prioritization
3.4 The effect of interrupt grouping on interrupt handling
In a GICv1 implementation that includes the GIC Security Extensions:

• The only implemented alias register is GICC_ABPR

• The other controls of the Group 1 interrupts are provided only by the Non-secure copies of the Group 0
control registers, as Table 3-5 shows.

In a GIC implementation that includes the GIC Security Extensions, CPU interface Non-secure control of Group 1
interrupts is identical in GICv1 and GICv2. This means that, in a GICv2 implementation, Table 3-5 shows the
GICC_* registers that provide the Non-secure control of Group 1 interrupts.

In an implementation that supports interrupt grouping, GICC_CTLR contains additional fields, including fields to
control the handling of the grouped interrupts:

• Separate enable bits to control the signaling of Group 0 and Group 1 interrupts to the connected processor:

— bit[0], the Enable bit in a GIC that does not support interrupt grouping, becomes the EnableGrp0 bit,
and controls whether Group 0 interrupts are signaled to the processor

— the EnableGrp1 bit is added, to control whether Group 1 interrupts are signaled to the processor.

• The FIQEn bit, that controls whether the interface signals Group 0 interrupts to the processor using the IRQ
or FIQ interrupt request.

• The CBPR bit, that controls whether GICC_BPR or GICC_ABPR is used when determining possible
interrupt preemption by Group 1 interrupts, see Control of preemption by Group 1 interrupts on page 3-57.

• The AckCtl bit, that controls whether a read of the GICC_IAR, or the Secure GICC_IAR if the GIC
implements the Security Extensions, can acknowledge a Group 1 interrupt. For more information see The
effect of interrupt grouping on interrupt acknowledgement on page 3-50.

Note
 As described in The effect of interrupt grouping on interrupt acknowledgement on page 3-50, ARM

deprecates setting the AckCtl bit to 1.

• In a GICv2 implementation:

— the IRQ and FIQ bypass disable bits, that control whether the bypass IRQ and FIQ signals are
forwarded to the processor, see Interrupt signal bypass, and GICv2 bypass disable on page 2-27.

— The EOImode bit, that controls whether priority drop is separated from interrupt deactivation, see
Priority drop and interrupt deactivation on page 3-38. If the GIC implements the Security Extensions,
separate EOImodeNS and EOImodeS bits are implemented for Non-secure and Secure accesses. This
provides independent control of the End of interrupt mode for Non-secure and Secure interrupt
handling.

Table 3-5 CPU interface Non-secure control of Group 1 interrupts

Function Non-secure Group 1 control register

Binary point Non-secure GICC_BPR

Interrupt acknowledge Non-secure GICC_IAR

EOI Non-secure GICC_EOIR

Highest priority pending interrupt Non-secure GICC_HPPIR
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 3-49
ID072613 Non-Confidential

3 Interrupt Handling and Prioritization
3.4 The effect of interrupt grouping on interrupt handling
3.4.2 Special interrupt numbers when a GIC supports interrupt grouping

Special interrupt numbers on page 3-43 describes the use of interrupt ID 1023 to indicate a spurious interrupt. The
full list of the interrupt ID numbers the GIC architecture reserves for special purposes is as follows:

1020-1021 Reserved.

1022 Used only if the GIC supports interrupt grouping.

The GIC returns this value to a processor in response to an interrupt acknowledge only when all of
the following apply:
• the interrupt acknowledge is a read of GICC_IAR
• the highest priority pending interrupt is a Group 1 interrupt
• GICC_CTLR.AckCtl is set to 0
• the priority of the interrupt is sufficient for it to be signaled to the processor.

Note
 • Interrupt ID 1022 indicates that there is a Group 1 interrupt of sufficient priority to be

signaled to the processor, that must be acknowledged by a read of the GICC_AIAR, or in an
implementation that includes the GIC Security Extensions, by a read of the Non-secure
GICC_IAR.

• When using a GICv1 implementation, in this situation Secure software on a processor might
alter its schedule to permit Non-secure software to handle the interrupt, to minimize the
interrupt latency.

1023 This value is returned to a processor, in response to an interrupt acknowledge, if there is no pending
interrupt with sufficient priority for it to be signaled to the processor.

On a processor that supports interrupt grouping, values of 1022 and 1023 are spurious interrupt IDs.

3.4.3 The effect of interrupt grouping on interrupt acknowledgement

In a GIC implementation that does not support interrupt grouping, when a processor takes an interrupt, it
acknowledges the interrupt by reading the GICC_IAR, see General handling of interrupts on page 3-37. This read
of the GICC_IAR always acknowledges the highest priority pending interrupt for the processor performing the read.

In a GIC implementation that supports interrupt grouping, ARM strongly recommends setting GICC_CTLR.AckCtl
to 0, meaning:

• for a GICv2 implementation:
— a group 0 interrupt is acknowledged by a read of GICC_IAR, or a Secure read of GICC_IAR if the

implementation includes the GIC Security Extensions
— a group 1 interrupt is acknowledged by a read of GICC_AIAR, or a Non-secure read of GICC_IAR if

the implementation includes the GIC Security Extensions

• for a GICv1 implementation:
— a group 0 interrupt must be acknowledged by a read of the Secure GICC_IAR
— a group 1 interrupt must be acknowledged by a read of Non-secure GICC_IAR.

In each case, the read must be an acknowledgement of the highest priority pending interrupt on the CPU interface.

For more information about the registers used for interrupt handling, see GIC interrupt grouping support on
page 3-48.

If the Interrupt Acknowledge register access does not correspond to the highest-priority pending interrupt on the
CPU interface then:

• a read of GICC_IAR when the highest-priority pending interrupt is a Group 1 interrupt returns the spurious
interrupt value 1022
3-50 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

3 Interrupt Handling and Prioritization
3.4 The effect of interrupt grouping on interrupt handling
• a read of GICC_AIAR when the highest-priority pending interrupt is a Group 0 interrupt returns the spurious
interrupt value 1023.

When the GICC_CTLR.AckCtl bit is set to 0, to ensure system correctness, every Group 0 interrupt must have a
higher priority than any Group 1 interrupt.

When the GICC_CTLR.AckCtl bit is set to 1, a read of GICC_IAR acknowledges the highest-priority pending
interrupt on the CPU interface, regardless of whether it is a Group 0 or a Group 1 interrupt. However, ARM
deprecates this use of GICC_CTLR.AckCtl, and strongly recommends using a software model where
GICC_CTLR.AckCtl is set to 0.

Interrupt acknowledgement with the GIC Security Extensions

This subsection describes how the requirements for acknowledging grouped interrupts apply to interrupt handling
when a processor that implements the ARM processor Security Extensions is connected to a GIC CPU interface that
included the GIC Security Extensions. In this configuration:
• Group 0 interrupts are Secure interrupts
• Group 1 interrupts are Non-secure interrupts.

The subsection only describes operation with GICC_CTLR.AckCtl set to 0, the recommended configuration.

If the highest priority pending interrupt is a Secure interrupt, the processor must make a Secure read of the
GICC_IAR to acknowledge it.

To acknowledge a Non-secure interrupt, the processor can:
• perform a Non-secure read of the GICC_IAR register
• in a GICv2 implementation, perform a Secure read of the GICC_AIAR register.

This means that, when Non-secure software is handling a Non-secure interrupt, the processor makes a Non-secure
read of the GICC_IAR to acknowledge a Non-secure interrupt.

If a read of the GICC_IAR does not match the security of the interrupt, the GICC_IAR read does not acknowledge
any interrupt and returns the value:
• 1022 for a Secure read when the highest priority interrupt is Non-secure
• 1023 for a Non-secure read when the highest priority interrupt is Secure.

See Effect of interrupt grouping on reads of the GICC_IAR on page 4-136 for more information.

3.4.4 GIC power on or reset configuration

On power-up, or after a reset, a GIC implementation that supports interrupt grouping is configured with:
• all interrupts assigned to Group 0
• the FIQ exception request disabled.

This means that Group 0 interrupts are signaled using the IRQ interrupt request. Figure 3-2 on page 3-52 shows this
configuration.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 3-51
ID072613 Non-Confidential

3 Interrupt Handling and Prioritization
3.4 The effect of interrupt grouping on interrupt handling
Figure 3-2 Reset configuration of a GIC that includes the FIQ exception request

Distributor

GICC_CTLR.FIQEn

GICD_IGROUP

Group 0 interrupts

Hardware interrupts

CPU interface
Processor

GIC

SoC

EnableGrp0 EnableGrp1

IRQ
Software with no
awareness of the

Security Extensions
FIQEn==0
3-52 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

3 Interrupt Handling and Prioritization
3.5 Interrupt grouping and interrupt prioritization
3.5 Interrupt grouping and interrupt prioritization
Many system implementations require that no Group 1 interrupt ever preempt any Group 0 interrupt. For such an
implementation, ARM strongly recommends that:

• Group 0 interrupts are always assigned priority values in the lower half of the supported priority value range.
These values correspond to the higher-priority interrupts

• Group 1 interrupts are always assigned priority values in the upper half of the supported priority value range.
These values correspond to the lower-priority interrupts.

This ensures that every Group 1 interrupt is of lower priority than any Group 0 interrupt.

If the GIC supports the GIC Security Extensions:

• The GIC provides Secure and Non-secure views of the interrupt priority settings, see Software views of
interrupt priority in a GIC that includes the Security Extensions.

• The minimum number of priority values supported increases from 16 to 32.

• Non-secure accesses can see only half of the supported priority values. Therefore, if the GIC implements 32
priority values, Non-secure accesses see only 16 priority values.

Note
 See Processor security state and Secure and Non-secure GIC accesses on page 1-20 for the definitions of

Secure software and Secure and Non-secure accesses.

3.5.1 Software views of interrupt priority in a GIC that includes the Security Extensions

When a processor reads the priority value of a Group 1 interrupt, the GIC returns either the Secure or the Non-secure
view of that value, depending on whether the access is Secure or Non-secure. This section describes the two views
of interrupt priority, and the relationship between them.

The GIC implements a minimum of 32 and a maximum of 256 priority levels. This means it implements 5-8 bits of
the 8-bit priority value fields in the GICD_IPRIORITYRn registers. All of the implemented priority bits can be
accessed by a Secure access, and unimplemented low-order bits of the priority fields are RAZ/WI. Figure 3-3 shows
the Secure view of a priority value field for an interrupt. The priority value stored in the Distributor is equivalent to
the Secure view.

Figure 3-3 Secure view of the priority field for any interrupt

In this view:
• bits H-D are the bits that the GIC must implement, corresponding to 32 priority levels
• bits c-a are the bits the GIC might implement, that are RAZ/WI if not implemented.
• the GIC must implement bits H-a to provide the maximum 256 priority levels
• ARM recommends that, for a Group 1 interrupt, bit[7] is set to 1.

A Non-secure access can only see a priority value field that corresponds to the Non-secure view of interrupt priority.
For Non-secure accesses, the GIC supports half the priority levels it supports for Secure accesses. Figure 3-4 on
page 3-54 shows the Non-secure view of a priority value field for a Group 1 interrupt.

a

7 6 5 4 3 2 1 0

H G F E D c bSecure view,
priority value field for any interrupt
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 3-53
ID072613 Non-Confidential

3 Interrupt Handling and Prioritization
3.5 Interrupt grouping and interrupt prioritization
Figure 3-4 Non-secure view of the priority field for a Group 1 interrupt

In this view:
• bits G-D are the bits that the GIC must implement, corresponding to 16 priority levels
• bits c-a are the bits the GIC might implement, that are RAZ/WI if not implemented
• the GIC must implement bits G-a to provide the maximum 128 priority levels
• bit [0] is RAZ/WI.

The Non-secure view of a priority value does not show how the value is stored in the Distributor. Taking the value
from a Non-secure write to a priority field, before storing the value:
• the value is right-shifted by one bit
• bit [7] of the value is set to 1.

This translation means the priority value for the Group 1 interrupt is in the top half of the possible value range,
meaning the interrupt priority is in the bottom half of the priority range.

A Secure read of the priority value for an interrupt returns the value stored in the Distributor. Figure 3-5 shows this
Secure view of the priority value field for a Group 1 interrupt that has had its priority value field set by a Non-secure
access, or has had a priority value with bit [7] == 1 set by a Secure access:

Figure 3-5 Secure read of the priority field for a Group 1 interrupt

A Secure write to the priority value field for a Group 1 interrupt can set bit [7] to 0, but see Recommendations for
managing priority values on page 3-56. If a Secure write sets bit [7] to 0:

• A Non-secure read returns the value 0bGFEDcba0.

• A Non-secure write can change the value of the field, but only to a value that has bit [7] set to 1 in the
Distributor view of the field.

Note
 This behavior of Non-secure accesses applies only to the Priority value fields in the GICD_IPRIORITYRn:

• if the Priority field in the GICC_PMR holds a value with bit [7] == 0, then the field is RAZ/WI to Non-secure
accesses

• if the Priority field in the GICC_RPR holds a value with bit [7] == 0, then the field is RAZ to Non-secure
reads.

Figure 3-6 on page 3-55 shows the relationship between the views of the Priority value fields.

0

7 6 5 4 3 2 1 0

G F E D c b aNon-secure view,
priority value field for Group 1 interrupt

a

7 6 5 4 3 2 1 0

1 G F E D c b
Secure read,
priority value field for Group 1 interrupt,
with value set by a Non-secure write
3-54 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

3 Interrupt Handling and Prioritization
3.5 Interrupt grouping and interrupt prioritization
Figure 3-6 Relationship between Secure and Non-secure views of interrupt priority fields

Figure 3-7 shows how the software views of the interrupt priorities, from Secure and Non-secure accesses, relate to
the priority values held in the Distributor, and the interrupt value that are visible to Secure and Non-secure accesses.
This is for a GIC that implements the maximum range of priority values.

Figure 3-7 Software views of the priorities of Group 1 and Group 0 interrupts

a

7 6 5 4 3 2 1 0

H G F E D c b Matches Distributor view

0

7 6 5 4 3 2 1 0

G F E D c b a Translation of Distributor view

a

7 6 5 4 3 2 1 0

1a G F E D c b

Secure Group 0 or Group 1

Non-secure Group 1

Secure Group 1

InterruptAccess

InterruptAccess

InterruptAccess

Matches Distributor view

a If the priority value was set by a Non-secure write, bit [7] is set to 1 in the Distributor, and a Secure
read sees this value. A Secure write to the field can set this bit to 0, see text for how this affects
Non-secure accesses to the field.
The priority field for a Group 0 interrupt is RAZ/WI to Non-secure accesses.

0x00

0x7F
0x80

0xFF

Priority range for
Group 1 interrupts b

0x00

0xFE

Increasing
prioritya

0x00

0xFF

Increasing
priority

Priority range for
 Group 0 interrupts b

Priority values
in Distributor

a All priority values are even (bit [0] == 0) in the view from Non-secure accesses.

Software view from
Non-secure accesses

Software view from
Secure accesses

b Ranges recommended by ARM. See text for more information, including about
cases where these ranges might not be appropriate.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 3-55
ID072613 Non-Confidential

3 Interrupt Handling and Prioritization
3.5 Interrupt grouping and interrupt prioritization
Table 3-6 shows how the number of priority value bits implemented by the GIC affects the Secure and Non-secure
views of the priority of a Group 1 interrupt.

Note
 Non-secure software has no visibility of the priority settings of Group 0 interrupts.

This model for the presentation of priority values ensures software written to operate with an implementation of this
GIC architecture functions as intended regardless of whether the GIC implements the GIC Security Extensions.
However, programmers must ensure that software assigns appropriate priority levels to the Group 0 and Group 1
interrupts. See Priority management and the GIC Security Extensions on page 3-60 for more information.

For more information about priority-related register access restrictions associated with the GIC Security Extensions,
see the pseudocode in Interrupt generation when the GIC supports interrupt grouping on page 3-58.

Recommendations for managing priority values

ARM strongly recommends that:

• for a Group 0 interrupt, software sets bit [7] of the priority value field to 0

• if using a Secure write to set the priority of a Group 1 interrupt, software sets bit [7] of the priority value field
to 1.

This ensures that all Group 0 interrupts have lower priority values, and therefore higher priorities, than all Group 1
interrupts. However, a system might have requirements that cannot be met with this scheme, see Priority
management and the GIC Security Extensions on page 3-60.

Note
 • When both the GIC and the connected processor include the Security Extensions, Group 0 interrupts are

Secure interrupts, and Group 1 interrupts are Non-secure interrupts.

• Software might not have any awareness of the GIC Security Extensions, and therefore might not know
whether it is making Secure or Non-secure accesses to GIC registers. However, for any implemented
interrupt, software can write 0xFF to the corresponding GICD_IPRIORITYRn priority value field, and then
read back the value stored in the field to determine the supported interrupt priority range. ARM recommends
that, before checking the priority range in this way:
— for a peripheral interrupt, software first disables the interrupt
— for an SGI, software first checks that the interrupt is inactive.

Table 3-6 Effect of not implementing some priority field bits, with GIC Security Extensions

Implemented priority bits, as
seen in Secure view

Possible priority field values, for a Group 1 interrupt

Secure view Non-secure view

[7:0] 0xFF-0x00 (255-0), all values 0xFE-0x00 (254-0), even values only

[7:1] 0xFE-0x00 (254-0), even values only 0xFC-0x00 (252-0), in steps of 4

[7:2] 0xFC-0x00 (252-0), in steps of 4 0xF8-0x00 (248-0), in steps of 8

[7:3] 0xF8-0x00 (248-0), in steps of 8 0xF0-0x00 (240-0), in steps of 16
3-56 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

3 Interrupt Handling and Prioritization
3.5 Interrupt grouping and interrupt prioritization
3.5.2 Control of preemption by Group 1 interrupts

See Preemption on page 3-45 and Priority grouping on page 3-45 for more information about preemption.

When a GIC implementation supports interrupt grouping, the GICC_BPR is always used to determine whether a
Group 0 interrupt is signaled to the processor, for possible preemption. By default, the GICC_ABPR is used to
determine whether a Group 1 interrupt is signaled for possible preemption. However, when GICC_CTLR.CBPR is
set to 1, GICC_BPR is used for determining possible preemption, for both Group 0 and Group 1 interrupts.

Effect of the GIC Security Extensions on control of preemption by Group 1 interrupts

If the GIC implementation includes the Security Extensions:
• the CBPR bit is implemented only in the Secure copy of GICC_CTLR.
• it is the Secure copy of GICC_BPR that is:

— always used to determine whether Group 0 interrupts are signaled to the processor
— when GICC_CTLR.CBPR is set to 1, also used to determine whether Group 0 interrupts are signaled

• GICC_ABPR is an alias of the Non-secure copy of GICC_CTLR
• GICC_ABPR is a Secure register, accessible only by Secure software accesses.

3.5.3 The effect of interrupt grouping on priority grouping

When an interrupt is using the GICC_ABPR, the effective binary point value is one less than that stored in the
register, as Table 3-7 shows. This means that software with no awareness of the effects of interrupt grouping and
the GIC Security Extensions sees the same priority grouping mechanism regardless of whether it is running on a
processor that is in Secure or Non-secure state.

Note
 • In GICv2, the effective binary point value adjustment also occurs in GIC implementations that do not include

the Security Extensions.

• Priority grouping always operates on the priority value held in the Distributor, not the value visible to a
Non-secure read of the priority value corresponding to a Non-secure interrupt. See Figure 3-6 on page 3-55
and Figure 3-7 on page 3-55.

The minimum binary point value supported for the GICC_ABPR register is:
• IMPLEMENTATION DEFINED

• in the range 1-4
• one greater than the minimum value supported for the Secure copy of the GICC_BPR register.

Table 3-7 shows the resultant priority grouping for Group 1 interrupts when GICC_CTLR.CBPR==0.

Table 3-7 Priority grouping for Group 1 interrupts when GICC_CTLR.CBPR==0

GICC_ABPR value
Interrupt priority field [7:0]

Group priority field Subpriority field Field with binary pointa

0b - - -.

1 [7:1]c [0] HGFEDcb.s

2 [7:2]c [1:0] HGFEDc.ss

3 [7:3]c [2:0] HGFED.sss

4 [7:4]c [3:0] HGFE.ssss

5 [7:5]c [4:0] HGF.sssss
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 3-57
ID072613 Non-Confidential

3 Interrupt Handling and Prioritization
3.5 Interrupt grouping and interrupt prioritization
For Group 0 interrupts, the priority grouping behavior is as described in Priority grouping on page 3-45.

In a GIC implementation that includes the Security Extensions, when GICC_CTLR.CBPR == 1:

• A Non-secure read of the GICC_BPR returns the value of the Secure GICC_BPR, incremented by 1, and
saturated to 0b111.

• Non-secure writes to GICC_BPR are ignored

• the GICC_ABPR register is redundant.

3.5.4 Interrupt generation when the GIC supports interrupt grouping

The pseudocode in Exception generation pseudocode, with interrupt grouping on page 3-64 describes the
generation of interrupts by the GIC when the GIC supports interrupt grouping.

6 [7:6]c [5:0] HG.ssssss

7 [7]c [6:0] H.sssssss

a. Group labelling aligns with that shown in Figure 3-6 on page 3-55.
b. Not supported.
c. If a Non-secure write sets the priority value field for a Non-secure interrupt then bit [7] is 1.

Table 3-7 Priority grouping for Group 1 interrupts when GICC_CTLR.CBPR==0 (continued)

GICC_ABPR value
Interrupt priority field [7:0]

Group priority field Subpriority field Field with binary pointa
3-58 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

3 Interrupt Handling and Prioritization
3.6 Additional features of the GIC Security Extensions
3.6 Additional features of the GIC Security Extensions
The effect of interrupt grouping on interrupt handling on page 3-48 and Interrupt grouping and interrupt
prioritization on page 3-53 describe many features of the GIC Security Extensions, especially for a GICv1
implementation, where interrupt grouping is supported only as part of the GIC Security Extensions. This section
describes the other features of the GIC Security Extensions.

Software can detect support for the GIC Security Extensions by reading the GICD_TYPER.SecurityExtn bit, see
Interrupt Controller Type Register, GICD_TYPER on page 4-88.

Note
 In the context of a GIC that implements the GIC Security Extensions connected to a processor that implements the
ARM Security Extensions, Group 0 interrupts are Secure interrupts, and Group 1 interrupts are Non-secure
interrupts. See Security Extensions support on page 1-16 for more information.

In addition:

• The banking of registers provides independent control of Secure and Non-secure interrupts, see Effect of the
GIC Security Extensions on the programmers’ model on page 4-80.

• The Non-secure copy of the GICC_BPR is aliased as the GICC_ABPR. This is a Secure register, meaning it
is only accessible by Secure accesses.

3.6.1 Access from processors not implementing the ARM Security Extensions

When connecting a processor that does not support the ARM Security Extensions to a GIC that implements the GIC
Security Extensions, typically all processor accesses to the GIC are assigned as either Secure or Non-secure:

• For a processor making Secure accesses:

— The processor can control all aspects of the GIC, and therefore can make configuration changes that
might affect Secure software running on other processors.

— In a GICv2 implementation, the processor uses Secure accesses to aliased registers, such as the
GICC_AIAR, to process Group 1 interrupts.

— Because GICv1 implementations do not include the aliased registers, if the implementation uses
interrupt grouping the processor might have to use the deprecated GICC_CTLR.AckCtl bit to enable
Group 1 interrupts to be processed using the standard CPU interface registers.

• For a processor making Non-secure accesses:

— The processor cannot control Group 0 interrupts. For the GIC to be programmed, the system
implementation must include at least one processor that can make Secure accesses.
A system might use a Secure processor to perform Secure accesses on behalf of a Non-secure
processor. This usage model is possible if the GIC or the system provides a method for the Secure
processor to access processor-banked copies of registers that belong to the Non-secure processor.

— To permit a Non-secure processor to control its own Group 0 interrupts, a GICv2 implementation can
implement the GICD_NSACRn registers. An implementation of these registers might permit a Secure
processor to permit the use of Non-secure accesses from a particular processor to control some aspects
of the operation of some Group 0 SGIs and SPIs.

— A GIC implementation can configure the GICD_IGROUPRn reset value so that interrupts are Group
1 on reset. see GICD_IGROUPR0 reset value on page 4-92 for more information.

3.6.2 The effect of the GIC Security Extensions on priority masking

This section describes how the GIC Security Extensions change the information given in Priority masking on
page 3-45.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 3-59
ID072613 Non-Confidential

3 Interrupt Handling and Prioritization
3.6 Additional features of the GIC Security Extensions
If the GIC implements the GIC Security Extensions, the GICC_PMR is RAZ/WI to Non-secure accesses if it holds
a value with bit [7] == 0. In normal operation, Non-secure software does not access the GICC_PMR when it is
programmed with such a value. For more information see Non-secure access to register fields for Group 0 interrupt
priorities on page 4-81.

3.6.3 Priority management and the GIC Security Extensions

A system that implements the GIC Security Extensions can use the following schemes for managing interrupt
priority:

Non-cooperative All Secure interrupts have higher priority than any Non-secure interrupt, and can always
preempt any Non-secure interrupt.

Co-operative Secure and Non-secure software interact to program some Secure interrupts with lower
priority than some Non-secure interrupts.

Secure software is software executing on a processor that implements the ARM Security Extensions, that can make
Secure accesses to the GIC, and might be able to make Non-secure accesses. Non-secure software can make only
Non-secure accesses.

Where Secure software manipulates the priority level of a Non-secure interrupt, normally it ensures bit [7] of the
priority value field is set to 1, so that the priority of the interrupt is in the lower half of the implemented range.
However, it might have to program the priority level of a Non-secure interrupt to a value in the upper half of the
implemented priority range, for example to manage an SGI from Non-secure software that targets a processor that
executes only Secure software.

Secure software can also set the priority of a Secure interrupt to a value in the lower half of the implemented priority
range, so that it has lower priority than some Non-secure interrupts.

Note
 • Setting the priority of a Secure interrupt in the lower half of the priority range provides an opportunity for

security attacks, such as denial of service. Secure software must consider the possibility of attacks of this kind
before setting a Secure interrupt priority to a value in the priority range visible to Non-secure software.

• The GIC architecture does not require all processors in the system to use the same scheme for managing
interrupt priority.
3-60 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

3 Interrupt Handling and Prioritization
3.7 Pseudocode details of interrupt handling and prioritization
3.7 Pseudocode details of interrupt handling and prioritization
The following sections provide pseudocode descriptions of interrupt handling and prioritization, with and without
the GIC Security Extensions, and describe the accesses to the registers that control prioritization in a system that
implements the GIC Security Extensions:
• General helper functions and definitions
• Exception generation pseudocode on page 3-64
• The effect of the GIC Security Extensions on accesses to prioritization registers on page 3-66.

3.7.1 General helper functions and definitions

The following pseudocode provides helper functions and definitions used elsewhere in the GIC pseudocode:

// Helper functions
// ================

SignalFIQ(boolean next_fiq, integer cpu_id) // Signals an interrupt on the FIQ input to the
 // processor, according to the value of next_fiq.

SignalIRQ(boolean next_irq, integer cpu_id) // Signals an interrupt on the IRQ input to the
 // processor, according to the value of next_irq.

boolean IsGrp0Int(integer InterruptID, cpu_id)
 // Returns TRUE if the field in the GICD_IGROUPRn
 // register associated with the argument InterruptID
 // is set to 0, indicating that the interrupt is
 // configured as a Group 0 interrupt.

boolean IsEnabled(integer InterruptID, cpu_id)
 // Returns TRUE if the interrupt specified by the
 // argument InterruptID is enabled in the associated
 // GICD_ISENABLERn or GICD_ICENABLERn register.

bits(3) SGI_CpuID(integer InterruptID, cpu_id)
 // Returns the ID of a source CPU for a pending interrupt
 // with the given interruptID targeting the current
 // CPU. If there are multiple source CPUs, the one
 // chosen is IMPLEMENTATION SPECIFIC.

bits(8) ReadGICD_ITARGETSR(integer InterruptID, cpu_id)
 // Returns an 8-bit field specifying which CPUs should
 // receive the interrupt specified by argument InterruptID

boolean AnyActiveInterrupts(integer cpu_id) // Returns TRUE if any interrupts are active on this
 // processor.

bits(8) ReadGICD_IPRIORITYR(integer InterruptID, cpu_id)
 // Returns the 8-bit priority field from the
 // GICD_IPRIORITYR associated with the argument InterruptID.

WriteGICD_IPRIORITYR(integer InterruptID, cpu_id, bits(8) Value)
 // Updates the priority field in the GICD_IPRIORITYR
 // associated with the argument InterruptID with the 8-bit
 // Value.

IgnoreWriteRequest() // Ignore the register write request (no operation).

AcknowledgeInterrupt(integer InterruptID, cpu_id)
 // Set the active state and attempt to clear the pending
 // state for the interrupt associated with the argument
 // InterruptID

// Global variables
// ================

integer cpu_id // An identifier for a specific CPU Interface. The value of this
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 3-61
ID072613 Non-Confidential

3 Interrupt Handling and Prioritization
3.7 Pseudocode details of interrupt handling and prioritization
 // variable has implicit effects on which CPU interface register,
 // CPU interface signal or banked version of a Distributor
 // register is accessed.

boolean NS_access // current GIC access state:
 // TRUE: Non-secure
 // FALSE: Secure.

// NOTE: Architected registers are considered global variables identified
// by their architecture mnemonic, and as such are not declared here.

// global constants
// ================

integer MINIMUM_BINARY_POINT // A minimum binary point value of 0,1,2 or 3,
 // this is an IMPLEMENTATION DEFINED value.
 // NOTE: min. value is the SECURE value where supported

boolean IGNORE_GROUP_ENABLE // IMPLEMENTATION DEFINED boolean that determines whether the
 // highest priority pending interrupt is masked by the distributor
 // enable BEFORE or AFTER prioritisation:
 //
 // BEFORE prioritisation Value = FALSE
 // AFTER prioritisation Value = TRUE

boolean GICC_MASK_HPPIR // IMPLEMENTATION DEFINED boolean that determines whether a read
 // of GICC_HPPIR returns a spurious interrupt for pending
 // interrupts disabled by GICC_CTLR.EnableGrp{0,1}} == '0'

bits(8) P_MASK // IMPLEMENTATION DEFINED mask of valid priority bits:
 // Consists of an 8-bit field where the top N bits are set to 1,
 // where N is the number of priority bits implemented.
 // For systems without the Security Extensions, supported
 // values are 0xF0, 0xF8, 0xFC, 0xFE and 0xFF.
 // For systems with the Security Extensions, supported
 // values are 0xF8, 0xFC, 0xFE and 0xFF.

// PriorityIsHigher()
// ==================

boolean PriorityIsHigher(bits(8) pr1, bits(8) pr2)
 return UInt(pr1) < UInt(pr2); // Lower number represents higher priority.

// GIC_PriorityMask()
// ==================

// NOTE: where the Security Extensions are not supported, NS_mask = '0'

bits(8) GIC_PriorityMask(integer n, bit NS_mask) // Calculate the Binary Point (group) mask.
 assert n >= 0 && n <= 7; // Range check for the priority mask.

 if NS_mask == '1' then // Mask generation for a secure GIC access.
 n = n - 1;
 // CHECK:
 if n < MINIMUM_BINARY_POINT then // Saturate n on the minimum value supported; range 0-3
 n = MINIMUM_BINARY_POINT; // NOTE: min. value is the SECURE value where supported

 mask = '1111111100000000'<14-n:7-n>; // Generate the 8-bit group priority mask.
 return mask;

// boolean IsPending()
// ===================
//
// Returns TRUE if the interrupt specified by argument interruptID
// is pending for the CPU specified by argument cpuID
//
3-62 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

3 Interrupt Handling and Prioritization
3.7 Pseudocode details of interrupt handling and prioritization
boolean IsPending(integer interruptID, integer cpuID)
 pending = FALSE;

 target_cpus = ReadGICD_ITARGETSR(interruptID);

 if PEND && !ACTIVE(interruptID) && target_cpus<cpuID> == '1' then
 pending = TRUE;

 return pending;

// HighestPriorityPendingInterrupt()
// =================================
//
// Returns the ID of the highest priority interrupt that is pending and enabled.
// Otherwise, returns 1023 (i.e. a spurious interrupt)
//
// In implementations where interrupts are masked by the distributor group enable bits AFTER
// prioritisation (i.e. IGNORE_GROUP_ENABLE is TRUE), this function may return the ID of a pending
// interrupt in a disabled group even though there is a (lower priority) pending interrupt that is
// fully enabled (i.e. enabled in GICD_IENABLER and the appropriate group enable bit is '1' in
// GICD_CTLR). This is a helper function only and does not explain the full efect of GICC_HPPIR.
// The value returned by a read of GICC_HPPIR is explained in the pseudocode provided with the
// register description.

bits(10) HighestPriorityPendingInterrupt(integer cpu_id)

 num_interrupts = 32 * (UInt(GICD_TYPER<4:0>) + 1); // Work out how many interrupts are supported

 hppi= 1023; // Set initial ID to be no intterupt pending

 for intID = 0 to num_interrupts - 1
 group_enabled = (IsGrp0Int(intID) && (GICD_CTLR.EnableGrp0 == '1')) ||
 (!IsGrp0Int(intID) && (GICD_CTLR.EnableGrp1 == '1'));

 if IsPending(intID, cpu_id) && IsEnabled(intID) then
 if group_enabled || IGNORE_GROUP_ENABLE then
 if PriorityIsHigher(ReadGICD_IPRIORITYR(intID), ReadGICD_IPRIORITYR(hppi)) then
 hppi = intID;

 return(hppi);
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 3-63
ID072613 Non-Confidential

3 Interrupt Handling and Prioritization
3.7 Pseudocode details of interrupt handling and prioritization
3.7.2 Exception generation pseudocode

Interrupt grouping, and the GIC Security Extensions, make the exception generation model significantly more
complicated:

• Exception generation pseudocode, with interrupt grouping describes exception generation by a GIC
implementation that supports interrupt grouping, and might include the Security Extensions

• Exception generation pseudocode, when interrupt grouping is not supported on page 3-65 describes the
simplified exception generation model for a GIC implementation that does not support interrupt grouping.

Exception generation pseudocode, with interrupt grouping

The following pseudocode describes how exceptions are generated by a CPU interfaces that implement the GIC
Security Extensions:

// GenerateExceptions()
// ====================
//

GIC_GenerateExceptions(
 boolean systemFIQ,
 boolean systemIRQ)

 while TRUE do // Loop continuously.
 cpu_count = UInt(GICD_TYPER<7:5>) + 1; // Determine the number of CPU interfaces.

 for cpu_id = 0 to cpu_count - 1 // Loop though CPU interfaces. The iterations of
 // this loop are permitted to occur in parallel.

 (next_int, next_grp0) = UpdateExceptionState(cpu_id); // Returns pending interrupts, masked
 // by distributor enables but not cpu i/f enables

 irq_wake = FALSE; // IRQ wake up signal to power management, if required
 fiq_wake = FALSE; // FIQ wake up signal to power management, if required

 cpu_irq = FALSE; // IRQ signal to CPU
 cpu_fiq = FALSE; // FIQ signal to CPU

 if (next_int) then
 if (next_grp0 && GICC_CTLR[cpu_id].FIQEn == '1') then
 fiq_wake = TRUE;
 if (GICC_CTLR[cpu_id].EnableGrp0 == '1') then
 cpu_fiq = TRUE;
 else
 irq_wake = TRUE;
 if (next_grp0 && GICC_CTLR[cpu_id].EnableGrp0 == '1' ||
 !next_grp0 && GICC_CTLR[cpu_id].EnableGrp1 == '1')
 then
 cpu_irq = TRUE;

// Optional bypass logic
//
 if GICC_CTLR[cpu_id].EnableGrp0 == '0' || GICC_CTLR[cpu_id].FIQEn == '0'
 then
 if GICC_CTLR[cpu_id].FIQBypDisGrp0 == '0' ||
 (GICC_CTLR[cpu_id].FIQBypDisGrp1 == '0' && GICC_CTLR[cpu_id].FIQEn == '0')
 then
 cpu_fiq = systemFIQ; // Set FIQ to bypass

 if GICC_CTLR[cpu_id].EnableGrp1 == '0' &&
 (GICC_CTLR[cpu_id].EnableGrp0 == '0' || GICC_CTLR[cpu_id].FIQEn == '1')
 then
 if GICC_CTLR[cpu_id].IRQBypDisGrp1 == '0' ||
 (GICC_CTLR[cpu_id].IRQBypDisGrp0 == '0' && GICC_CTLR[cpu_id].FIQEn == '1')
 then
 cpu_irq = systemIRQ; // Set IRQ to bypass
3-64 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

3 Interrupt Handling and Prioritization
3.7 Pseudocode details of interrupt handling and prioritization
//
// End, optional bypass logic

 SignalFIQ(cpu_fiq, cpu_id); // Update driven status of FIQ.
 SignalIRQ(cpu_irq, cpu_id); // Update driven status of IRQ.

// UpdateExceptionState()
// ======================
//

(boolean, boolean) UpdateExceptionState(integer cpu_id)

 sbp = UInt(GICC_BPR[cpu_id]<2:0>); // Secure version of this register.
 nsbp = UInt(GICC_ABPR[cpu_id]<2:0>);

 next_int = FALSE;
 next_grp0 = FALSE;

 intID = HighestPriorityPendingInterrupt(cpu_id); // Establish the ID of the highest pending
 // interrupt on the this CPU interface.

 if PriorityIsHigher(ReadGICD_IPRIORITYR(intID), GICC_PMR[cpu_id]<7:0>) &&
 IsPending(intID, cpu_id)
 then
 smsk = GIC_PriorityMask(sbp, '0');
 if GICC_CTLR[cpu_id].CBPR == '1' then
 nsmsk = smsk;
 else
 nsmsk = GIC_PriorityMask(nsbp, '1');

 if IsGrp0Int(intID) && // Highest pending interrupt is secure
 (GICD_CTLR.EnableGrp0 == '1') // and secure interrupts are enabled
 then
 if !AnyActiveInterrupts() ||
 PriorityIsHigher(ReadGICD_IPRIORITYR(intID), GICC_RPR[cpu_id]<7:0> AND smsk)
 then
 next_int = TRUE;
 next_grp0 = TRUE;
 else
 if (!IsGrp0Int(intID)) && // Highest pending interrupt is non-secure
 (GICD_CTLR.EnableGrp1 == '1') // and non-secure interrupts are enabled
 then
 if !AnyActiveInterrupts() ||
 PriorityIsHigher(ReadGICD_IPRIORITYR(intID), GICC_RPR[cpu_id]<7:0> AND nsmsk)
 then
 next_int = TRUE;
 next_grp0 = FALSE;

 return(next_int, next_grp0);

Exception generation pseudocode, when interrupt grouping is not supported

The following pseudocode describes how exceptions are generated by a GIC that does not support interrupt
grouping. This means it applies only to a GICv1 implementation that does not include the Security Extensions.

// GenerateExceptions()
// ====================
//

GIC_GenerateExceptions()
 while TRUE do // Loop continuously.
 cpu_count = UInt(GICD_TYPER<7:5>) + 1; // Determine the number of CPU interfaces.

 for cpu_id = 0 to cpu_count - 1 // Loop though CPU interfaces. The iterations of
 // this loop are permitted to occur in parallel.
 next_irq = UpdateExceptionState(cpu_id);
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 3-65
ID072613 Non-Confidential

3 Interrupt Handling and Prioritization
3.7 Pseudocode details of interrupt handling and prioritization
 SignalIRQ(next_irq, cpu_id); // Update driven status of IRQ.

// UpdateExceptionState()
// ======================
//

boolean UpdateExceptionState(integer cpu_id)

 next_irq = FALSE;

 intID = HighestPriorityPendingInterrupt(cpu_id); // Establish the ID of the highest pending
 // interrupt on the this CPU interface.

 if PriorityIsHigher(ReadGICD_IPRIORITYR(intID), GICC_PMR[cpu_id]<7:0>) &&
 IsPending(intID, cpu_id)
 then
 if GICD_CTLR.Enable == '1' && GICC_CTLR.Enable == '1' then
 mask = GIC_PriorityMask(GICC_BPR[cpu_id]<2:0>, ‘0’);

 if !AnyActiveInterrupts() ||
 PriorityIsHigher(ReadGICD_IPRIORITYR(intID), GICC_RPR[cpu_id]<7:0> AND mask)
 then
 next_irq = TRUE;

 return(next_irq);

3.7.3 The effect of the GIC Security Extensions on accesses to prioritization registers

The GIC Security Extensions change some of the behavior of accesses to the prioritization registers. See the
pseudocode functions in:
• Interrupt Priority Registers, GICD_IPRIORITYRn on page 4-104
• Interrupt Priority Mask Register, GICC_PMR on page 4-131
• Binary Point Register, GICC_BPR on page 4-133
• Interrupt Acknowledge Register, GICC_IAR on page 4-135
• Running Priority Register, GICC_RPR on page 4-142
• Highest Priority Pending Interrupt Register, GICC_HPPIR on page 4-143.

See Non-secure access to register fields for Group 0 interrupt priorities on page 4-81 for more information.
3-66 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

3 Interrupt Handling and Prioritization
3.8 The effect of the Virtualization Extensions on interrupt handling
3.8 The effect of the Virtualization Extensions on interrupt handling
In general, the Virtualization Extensions have no effect on how the GIC handles and prioritizes physical interrupts.
See Chapter 5 GIC Support for Virtualization for information about how the GIC Virtualization Extensions support
virtual interrupt handling.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 3-67
ID072613 Non-Confidential

3 Interrupt Handling and Prioritization
3.9 Example GIC usage models
3.9 Example GIC usage models
An ARM processor that implements the ARMv7-A or ARMv7-R architecture profile supports two interrupt request
signals, nIRQ and nFIQ, each with an associated exception and processor mode:

• Asserting an IRQ request generates an IRQ exception. By default, this is taken in IRQ mode, and taking the
exception masks subsequent IRQ exceptions.

• Asserting an FIQ request generates an FIQ exception. By default, this is taken in FIQ mode, and taking the
exception masks both FIQ and IRQ exceptions.

The following sections describe different GIC usage models, that meet specific system requirements:
• Using IRQs and FIQs to provide Non-secure and Secure interrupts
• Supporting IRQs and FIQs when not using the processor Security Extensions on page 3-70.
• Supporting IRQs and FIQs in a virtualized processor environment on page 3-71.

All of these usage model examples use the hardware implementation shown in Figure 3-8, with a GIC that supports
Group 0 and Group 1 interrupts.

Figure 3-8 Generic GIC usage model

In each usage model, software uses the GICD_IGROUPRn registers to assign interrupts to the two groups, signaled
to the processor using the IRQ and FIQ interrupt requests.

Note
 The usage model described in Supporting IRQs and FIQs in a virtualized processor environment on page 3-71 also
requires the GIC to implement the GIC Virtualization Extensions.

3.9.1 Using IRQs and FIQs to provide Non-secure and Secure interrupts

Figure 3-9 on page 3-69 shows a system that implements the GIC Security Extensions, connected to a processor that
implements the ARM processor Security Extensions. This implementation:
• uses Group 0 interrupts as Secure interrupts, signaled as FIQs
• uses Group 1 interrupts as Non-secure interrupts, signaled as IRQs.

This means that, on the processor, FIQ interrupts are never routed to Non-secure software, and IRQ interrupts are
never routed to Secure software.

Distributor
Interrupt grouping

Group 0
interrupt

Hardware interrupts

CPU interface

Group 1
interrupt

ProcessorGIC

SoC

Enable Enable

IRQ

FIQ

FIQEn==1
3-68 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

3 Interrupt Handling and Prioritization
3.9 Example GIC usage models
Figure 3-9 Using the GIC to route Secure and Non-secure interrupts

Note
 The use of Group 0 and Group 1 interrupts to signal Secure interrupts as FIQs, and Non-secure interrupts as IRQs,
requires the processor to:
• route FIQs to be taken in Secure Monitor mode
• prevent Non-secure software from masking FIQs
• ensure that IRQs are masked whenever it is operating in Secure state.

Controlling Secure and Non-secure interrupts independently

The system shown in Figure 3-9 fulfils the general security requirement that Non-secure operation must not
interfere with Secure operation. Secure software takes full control of FIQs by routing them to the Secure software
and not permitting the Non-secure software to mask them.

On a GIC reset, all interrupts are assigned to Group 0, making them Secure interrupts. Secure software on the
processor:

• programs the GICD_IGROUPRn registers to indicate which interrupts are Group 1, Non-secure

• sets the Secure GICC_CTLR.FIQEn bit to 1 to configure the CPU interface to use FIQ for Group 0 interrupts.

• must enable Group 0 interrupts and Group 1 interrupts, independently, in the Distributor:
— GICD_CTLR.EnableGrp0 enables Group 0 interrupts
— GICD_CTLR.EnableGrp1 enables Group 1 interrupts.

• must enable Group 0 interrupts and Group 1 interrupts, independently, in the CPU interface:
— GICC_CTLR.EnableGrp0 enables Group 0 interrupts
— GICC_CTLR.EnableGrp1 enables Group 1 interrupts.

Distributor

FIQEn==1

GICD_IGROUP

Group 0 interrupt,
Secure

Hardware interrupts

CPU interface

Group 1 interrupt,
Non-secure

Secure software

Processor

GIC

SoC

EnableGrp0 EnableGrp1

IRQ

FIQ

Non-secure software
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 3-69
ID072613 Non-Confidential

3 Interrupt Handling and Prioritization
3.9 Example GIC usage models
3.9.2 Supporting IRQs and FIQs when not using the processor Security Extensions

Figure 3-10 shows a system in which the processor does not implement, or is not using, the Processor Security
Extensions. This system can use the interrupt grouping provided by the GICD_IGROUPRn registers to control both
IRQs and FIQs, based on:
• assigning FIQs to interrupt Group 0
• assigning IRQs to interrupt Group 1.

This section applies to any GICv1 implementation that includes the GIC Security Extensions, or any GICv2
implementation.

Figure 3-10 Using interrupt grouping to route IRQs and FIQs

On a GIC reset, for a GIC implementation that supports interrupt grouping, all interrupts are assigned to Group 0.
Therefore, to use this configuration, software executing on the processor must:

• Program the GICD_IGROUPRn registers to assign IRQ interrupts to Group 1.

Note
 For GICv2 implementations that do not include the Security Extensions, the GICD_IGROUPRn reset values

are IMPLEMENTATION DEFINED, see Interrupt Group Registers, GICD_IGROUPRn on page 4-91.

• Set GICC_CTLR.FIQEn to 1, to assign Group 0 interrupts to FIQ.

• Set GICC_CTLR.AckCtl to 0, so that both FIQ and IRQ interrupts are acknowledged from the single address
space, using:
— the GICC_IAR to acknowledge a Group 0 interrupt
— the GICC_AIAR to acknowledge a Group 1 interrupt
— the GICC_EOIR to indicate completion of a Group 0 interrupt
— the GICC_AEOIR to indicate completion of a Group 1 interrupt.

However, GICC_AIAR and GICC_AEOIR are implemented only in a GICv2 implementation. A processor
operating with a GICv1 implementation might have to use the deprecated mode of operation with
GICC_CTLR.AckCtl set to 1.

• Configure the required binary point support model, by either:

— setting GICC_CTLR.CBPR to 0, so that Group 0 uses GICC_BPR, and Group 1 uses GICC_ABPR

Distributor

FIQEn==1

GICD_IGROUP

Group 0 interrupts

Hardware interrupts

CPU interface

Group 1 interrupts

Processor

GIC

SoC

EnableGrp0 EnableGrp1

IRQ Software with no
awareness of the

Security ExtensionsFIQ
3-70 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

3 Interrupt Handling and Prioritization
3.9 Example GIC usage models
— setting GICC_CTLR.CBPR to 1, so that Group 0 and Group 1 use a common binary point register,
GICC_BPR.

3.9.3 Supporting IRQs and FIQs in a virtualized processor environment

Figure 3-11 on page 3-72 shows a system that supports processor virtualization, with the execution of legacy
software on virtual machines. The basis of the processor usage model is:

• Secure software assigns:
— Secure interrupts to Group 0, signaled to the processor as FIQs
— Non-secure interrupts to Group 1, signaled to the processor as IRQs.

This is the usage model described in Using IRQs and FIQs to provide Non-secure and Secure interrupts on
page 3-68.

• A hypervisor:

— Implements a virtual distributor, using features of the Virtualization Extension on the GIC. This
virtual distributor can virtualize IRQ interrupts from the GIC as Virtual IRQ and Virtual FIQ
interrupts, that it routes to an appropriate virtual machine.

— Routes physical IRQs to Hyp mode, so they can be serviced by the virtual distributor.

• A Guest OS running on a virtual machine assigns interrupts to Group 0 or Group 1, to assign them as FIQs
or IRQs, using the model described in Supporting IRQs and FIQs when not using the processor Security
Extensions on page 3-70. The accesses to the GIC Distributor registers are trapped to the hypervisor, and
therefore access the virtual distributor.

The virtual CPU interface signals these interrupts as virtual FIQs or virtual IRQs. This virtualization is under
the control of the hypervisor and is invisible to the Guest OS.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 3-71
ID072613 Non-Confidential

3 Interrupt Handling and Prioritization
3.9 Example GIC usage models
Figure 3-11 Using the GIC in a virtualized system

When the GIC signals an IRQ to the processor, the interrupt is routed to Hyp mode. The hypervisor determines
whether the interrupt is for itself, or for a Guest OS. If it is for a Guest OS it determines:
• which Guest OS must handle the interrupt
• whether that Guest OS has configured the interrupt as an FIQ or as an IRQ
• the interrupt priority, based on the priority configuration by the target Guest OS.

If the interrupt targets the current Guest OS, the hypervisor updates the List registers, to add the interrupt to the list
of pending interrupts for the current virtual machine.

Note
 • On receiving an IRQ that cannot be handled by the current Guest OS, the hypervisor can either:

— transfer control to a Guest OS that can handle the interrupt
— mark the interrupt as pending, as part of the saved context of the appropriate Guest OS.

• A system can have some interrupts that can be handled by more that one Guest OS, and other interrupts that
must be routed to a specific Guest OS.

A Guest OS handles a virtual interrupt exactly as it would handle the corresponding physical interrupt. The Guest
OS cannot detect that it is handling a virtual interrupt rather than a physical interrupt.

Distributor

FIQEn==1

GICD_IGROUP

Group 0
interrupt, Secure

Hardware interrupts

CPU
interface

Group 1 interrupt,
Non-secure

GIC

SoC

EnableGrp0 EnableGrp1

Virtual CPU
interface

FIQEn==1

EnableGrp0 EnableGrp1

IRQ

VIRQ

VFIQ

FIQ

Non-
secure

software

VFIQ is Virtual FIQ, VIRQ is Virtual IRQ

Guest OS
Guest OS

Secure software

Processor

Guest OS

Hypervisor

Virtual Distributor
IRQ assignmentList Registers

Group 0
interrupt, VFIQ

Group 1
interrupt, VIRQ

Register
accesses
3-72 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

Chapter 4
Programmers’ Model

This chapter describes the Distributor and CPU interface registers. It contains the following sections:
• About the programmers’ model on page 4-74
• Effect of the GIC Security Extensions on the programmers’ model on page 4-80
• Distributor register descriptions on page 4-84
• CPU interface register descriptions on page 4-124
• Preserving and restoring GIC state on page 4-155.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-73
ID072613 Non-Confidential

4 Programmers’ Model
4.1 About the programmers’ model
4.1 About the programmers’ model
The programmers’ model provides the software interface to the GIC. This chapter describes the programmers’
model for the GIC Distributor and CPU interfaces, that operates using a memory-mapped register interface.

The following sections describe the programmers’ model:
• GIC register names
• Distributor register map
• CPU interface register map on page 4-76
• GIC register access on page 4-77
• Enabling and disabling the Distributor and CPU interfaces on page 4-77
• Effect of the GIC Security Extensions on the programmers’ model on page 4-80.

Table 4-1 on page 4-75 and Table 4-2 on page 4-76 describe the register access type as follows:
RW Read and write.
RO Read only. Writes are ignored.
WO Write only. Reads return an UNKNOWN value.

Note
 This section does not describe the programmers’ model for the GIC virtual interface control registers and the virtual
CPU interfaces, that the GIC Virtualization Extensions add to a GIC implementation. See Chapter 5 GIC Support
for Virtualization for the description of the additions to the programmers’ model in a GIC that implements the GIC
Virtualization Extensions.

4.1.1 GIC register names

All of the GIC registers have names that provide a short mnemonic for the function of the register. In these names:
• the first three letters are GIC, indicating a GIC register
• the fourth letter is one of:

— D, indicating a Distributor register
— C, indicating a CPU interface register
— H, indicating a virtual interface control register, typically accessed by a hypervisor
— V, indicating a virtual CPU interface register.

• the remaining letters are a mnemonic for the register, for example the GIC Distributor Control Register is
called GICD_CTLR.

Note
 Chapter 5 GIC Support for Virtualization describes the GICH_* and GICV_* registers.

4.1.2 Distributor register map

Table 4-1 on page 4-75 shows the Distributor register map. Address offsets are relative to the Distributor base
address defined by the system memory map. All GIC registers are 32-bits wide. Reserved register addresses are
RAZ/WI.

Note
 For more information about legacy register names, see Appendix B Register Names.
4-74 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.1 About the programmers’ model
Table 4-1 Distributor register map

Offset Name Type Reseta Description

0x000 GICD_CTLR RW 0x00000000 Distributor Control Register

0x004 GICD_TYPER RO IMPLEMENTATION DEFINED Interrupt Controller Type Register

0x008 GICD_IIDR RO IMPLEMENTATION DEFINED Distributor Implementer Identification Register

0x00C-0x01C - - - Reserved

0x020-0x03C - - - IMPLEMENTATION DEFINED registers

0x040-0x07C - - - Reserved

0x080 GICD_IGROUPRnb RW IMPLEMENTATION DEFINEDc Interrupt Group Registers

0x084-0x0FC 0x00000000

0x100-0x17C GICD_ISENABLERn RW IMPLEMENTATION DEFINED Interrupt Set-Enable Registers

0x180-0x1FC GICD_ICENABLERn RW IMPLEMENTATION DEFINED Interrupt Clear-Enable Registers

0x200-0x27C GICD_ISPENDRn RW 0x00000000 Interrupt Set-Pending Registers

0x280-0x2FC GICD_ICPENDRn RW 0x00000000 Interrupt Clear-Pending Registers

0x300-0x37C GICD_ISACTIVERnd RW 0x00000000 GICv2 Interrupt Set-Active Registers

0x380-0x3FC GICD_ICACTIVERne RW 0x00000000 Interrupt Clear-Active Registers

0x400-0x7F8 GICD_IPRIORITYRn RW 0x00000000 Interrupt Priority Registers

0x7FC - - - Reserved

0x800-0x81C GICD_ITARGETSRn ROf IMPLEMENTATION DEFINED Interrupt Processor Targets Registers

0x820-0xBF8 RWf 0x00000000

0xBFC - - - Reserved

0xC00-0xCFC GICD_ICFGRn RW IMPLEMENTATION DEFINED Interrupt Configuration Registers

0xD00-0xDFC - - - IMPLEMENTATION DEFINED registers

0xE00-0xEFC GICD_NSACRne RW 0x00000000 Non-secure Access Control Registers, optional

0xF00 GICD_SGIR WO - Software Generated Interrupt Register

0xF04-0xF0C - - - Reserved

0xF10-0xF1C GICD_CPENDSGIRne RW 0x00000000 SGI Clear-Pending Registers

0xF20-0xF2C GICD_SPENDSGIRne RW 0x00000000 SGI Set-Pending Registers

0xF30-0xFCC - - - Reserved

0xFD0-0xFFC - RO IMPLEMENTATION DEFINED Identification registers on page 4-119

a. For details of any restrictions that apply to the reset values of IMPLEMENTATION DEFINED cases see the appropriate register description.
b. In a GICv1 implementation, present only if the GIC implements the GIC Security Extensions, otherwise RAZ/WI.
c. For more information see GICD_IGROUPR0 reset value on page 4-92.
d. In GICv1, these are the Active Bit Registers, ICDABRn. These registers are RO.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-75
ID072613 Non-Confidential

4 Programmers’ Model
4.1 About the programmers’ model
4.1.3 CPU interface register map

Table 4-2 shows the CPU interface register map. Address offsets are relative to the CPU interface base address
defined by the system memory map. All GIC registers are 32-bits wide. Reserved register addresses are RAZ/WI.

For a multiprocessor implementation, the GIC implements a set of CPU interface registers for each CPU interface.
ARM strongly recommends that each processor has the same CPU interface base address for the CPU interface that
connects it to the GIC. This is the private CPU interface base address for that processor. It is IMPLEMENTATION
DEFINED whether a processor can access the CPU interface registers of other processors in the system.

Note
 For more information about:
• the registers added by the GIC Virtualization Extensions, see Chapter 5 GIC Support for Virtualization
• legacy register names, see Appendix B Register Names.

e. GICv2 only.
f. In a uniprocessor implementation, these registers are RAZ/WI.

Table 4-2 CPU interface register map

Offset Name Type Reset Description

0x0000 GICC_CTLR RW 0x00000000 CPU Interface Control Register

0x0004 GICC_PMR RW 0x00000000 Interrupt Priority Mask Register

0x0008 GICC_BPR RW 0x0000000xa Binary Point Register

0x000C GICC_IAR RO 0x000003FF Interrupt Acknowledge Register

0x0010 GICC_EOIR WO - End of Interrupt Register

0x0014 GICC_RPR RO 0x000000FF Running Priority Register

0x0018 GICC_HPPIR RO 0x000003FF Highest Priority Pending Interrupt Register

0x001C GICC_ABPRb RW 0x0000000xa Aliased Binary Point Register

0x0020 GICC_AIARc RO 0x000003FF Aliased Interrupt Acknowledge Register

0x0024 GICC_AEOIRc WO - Aliased End of Interrupt Register

0x0028 GICC_AHPPIRc RO 0x000003FF Aliased Highest Priority Pending Interrupt Register

0x002C-0x003C - - - Reserved

0x0040-0x00CF - - - IMPLEMENTATION DEFINED registers

0x00D0-0x00DC GICC_APRnc RW 0x00000000 Active Priorities Registers

0x00E0-0x00EC GICC_NSAPRnc RW 0x00000000 Non-secure Active Priorities Registers

0x00ED-0x00F8 - - - Reserved

0x00FC GICC_IIDR RO IMPLEMENTATION DEFINED CPU Interface Identification Register

0x1000 GICC_DIRc WO - Deactivate Interrupt Register

a. See the register description for more information.
b. Present in GICv1 if the GIC implements the GIC Security Extensions. Always present in GICv2.
c. GICv2 only.
4-76 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.1 About the programmers’ model
4.1.4 GIC register access

All registers support 32-bit word accesses with the access type defined in Table 4-1 on page 4-75 and Table 4-2 on
page 4-76.

In addition, the GICD_IPRIORITYRn, GICD_ITARGETSRn, GICD_CPENDSGIRn, and GICD_SPENDSGIRn
registers support byte accesses.

Whether any halfword register accesses are permitted is IMPLEMENTATION DEFINED.

Note
 In the GIC architecture, all registers that are halfword-accessible or byte-accessible use a little endian memory order
model.

If the GIC implements the GIC Security Extensions these affect register accesses as follows:
• some registers are banked, see Register banking
• some registers are accessible only using Secure accesses
• optionally, the GIC supports lockdown of the values of some registers.

For more information see Effect of the GIC Security Extensions on the programmers’ model on page 4-80.

Register banking

Register banking refers to providing multiple copies of a register at the same address. The properties of a register
access determine which copy of the register is addressed. The GIC banks registers in the following cases:

• If the GIC implements the Security Extensions, some registers are banked to provide separate Secure and
Non-secure copies of the registers. The Secure and Non-secure register bit assignments can differ. A Secure
access to the register address accesses the Secure copy of the register, and a Non-secure access accesses the
Non-secure copy. See Effect of the GIC Security Extensions on the programmers’ model on page 4-80 for
more information.

• If the GIC is implemented as part of a multiprocessor system:

— Some registers are banked to provide a separate copy for each connected processor. These include the
registers associated with PPIs and SGIs, and the GICD_NSACRn, when implemented.

— The GIC implements the CPU interface registers independently for each CPU interface, and each
connected processor accesses these registers for the interface it connects to.

4.1.5 Enabling and disabling the Distributor and CPU interfaces

This section describes how to enable and disable the Distributor and CPU interfaces, and the differences in behavior
in an implementation that supports interrupt grouping. It describes:
• Implementations that support interrupt grouping
• Implementations that do not support interrupt grouping on page 4-79.

Implementations that support interrupt grouping

Interrupt grouping is present in all GICv2 implementations and in GICv1 implementations that include the GIC
Security Extensions,

In a GIC that supports interrupt grouping:

• the GICD_CTLR.EnableGrp0 bit controls the forwarding of Group 0 interrupts from the Distributor to the
CPU interfaces

• the GICD_CTLR.EnableGrp1 bit controls the forwarding of Group 1 interrupts from the Distributor to the
CPU interfaces

• the GICC_CTLR.EnableGrp0 bit controls the signaling of Group 0 interrupts by the CPU interface to the
processor
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-77
ID072613 Non-Confidential

4 Programmers’ Model
4.1 About the programmers’ model
• the GICC_CTLR.EnableGrp1 bit controls the signaling of Group 1 interrupts by the CPU interface to the
processor.

For the Distributor:

• If the GICD_CTLR.EnableGrp0 and GICD_CTLR.EnableGrp1 bits are both 0:

— the Distributor does not forward pending interrupts to the CPU interfaces

— it is IMPLEMENTATION DEFINED whether an edge-triggered interrupt signal sets the interrupt to the
pending state.

— reads of GICC_IAR, GICC_AIAR, GICC_HPPIR, or GICC_AHPPIR return a spurious interrupt ID

— software can read or write the Distributor registers

— it is IMPLEMENTATION DEFINED whether SGIs can be set pending using GICD_SGIR

• If either, but not both, of the GICD_CTLR.EnableGrp0 and GICD_CTLR.EnableGrp1 bits is set to 1, and
the highest priority pending interrupt is in the disabled group, the Distributor does not forward any pending
interrupts to the CPU interfaces. Although this is IMPLEMENTATION DEFINED, this applies in the following
cases:

— GICD_CTLR.EnableGrp0 set to 0 and GICD_CTLR.EnableGrp1 set to 1, and the highest priority
pending interrupt is in group 0

— GICD_CTLR.EnableGrp0 set to 1 and GICD_CTLR.EnableGrp1 set to 0, and the highest priority
pending interrupt is in group 1.

In an implementation that includes the GIC Security Extensions, this means that, in cases where there are
Group 1 interrupts with a higher priority than some Group 0 interrupts, it is possible for Non-secure software
to deny service to Secure software, by clearing the GICD_CTLR.EnableGrp1 bit. To prevent this, ARM
strongly recommends that all Group 0 interrupts are assigned a higher priority than all Group 1 interrupts.

In addition, to prevent Secure software from denying service to Non-secure software, Secure software must
ensure that when GICD_CTLR.EnableGrp1 is set to 1, either GICD_CTLR.EnableGrp0 is also set to 1, or
that there are no pending Group 0 interrupts.

See Recommendations for managing priority values on page 3-56 for more information.

For a CPU interface, when GICC_CTLR.AckCtl == 0:

• When GICC_CTLR.EnableGrp0 == 0

— Group 0 interrupts forwarded from the Distributor are not signaled to the processor

— any read of GICC_IAR returns a spurious interrupt ID

• When GICC_CTLR.EnableGrp0 == 1, Group 0 interrupts forwarded from the Distributor are signaled to the
processor.

• When GICC_CTLR.EnableGrp1 == 0

— Group 1 interrupts forwarded from the Distributor are not signaled to the processor

— any read of GICC_AIAR returns a spurious interrupt ID

• When GICC_CTLR.EnableGrp1 == 1, Group 1 interrupts forwarded from the Distributor are signaled to the
processor

• if either GICC_CTLR.EnableGrp0 or GICC_CTLR.EnableGrp1 is set to 0, and there is a pending interrupt
of sufficient priority in the disabled group, it is IMPLEMENTATION DEFINED whether a read of GICC_HPPIR
returns the ID of that interrupt, or a spurious interrupt ID.

For a CPU interface, when GICC_CTLR.AckCtl == 1:

• When GICC_CTLR.EnableGrp1 == 0, any Non-secure read of GICC_IAR returns a spurious interrupt ID

• When GICC_CTLR.EnableGrp0 == 0:

— if GICC_CTLR.EnableGrp1 == 0, any Secure read of GICC_AIAR returns a spurious interrupt ID
4-78 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.1 About the programmers’ model
— if GICC_CTLR.EnableGrp1 == 1, Group 0 interrupts are ignored and GICC_IAR behaves as
GICC_AIAR

• When GICC_CTLR.EnableGrp1 == 0, a Secure read of GICC_AIAR always returns a spurious interrupt ID

• if either GICC_CTLR.EnableGrp0 or GICC_CTLR.EnableGrp1 is set to 0, and there is a pending interrupt
of sufficient priority in the disabled group, it is IMPLEMENTATION DEFINED whether a read of GICC_HPPIR
returns the ID of that interrupt, or a spurious interrupt ID.

Note
 ARM deprecates use of GICC_CTLR.AckCtl, and strongly recommends using a software model where
GICC_CTLR.AckCtl is set to 0.

Implementations that do not support interrupt grouping

Note
 The only implementations that do not support interrupt grouping are GICv1 implementations that do not include the
GIC Security Extensions.

In a GIC that does not support interrupt grouping:
• the GICD_CTLR.Enable bit controls the forwarding of interrupts from the Distributor to the CPU interfaces
• the GICC_CTLR.Enable bit controls the signaling of interrupts by the CPU interface to the connected

processor.

For the Distributor:

• When GICD_CTLR.Enable is set to 1, the Distributor forwards the highest priority pending interrupt for each
CPU interface, subject to the prioritization rules.

• When GICD_CTLR.Enable is set to 0:

— the Distributor does not forward pending interrupts to the CPU interfaces

— it is IMPLEMENTATION DEFINED whether an edge-triggered interrupt signal sets the interrupt to the
pending state.

— reads of GICC_IAR, GICC_AIAR, GICC_HPPIR, or GICC_AHPPIR return a spurious interrupt ID

— software can read or write the Distributor registers

— it is IMPLEMENTATION DEFINED whether SGIs can be set pending using GICD_SGIR.

For a CPU interface:

• When GICC_CTLR.Enable is set to 1, the highest priority pending interrupt forwarded from the Distributor
to the CPU interface is signaled to the connected processor

• When GICC_CTLR.Enable is set to 0:
— any pending interrupts forwarded from the Distributor are not signaled to the processor
— software can read or write the CPU interface registers
— any read of the GICC_IAR returns a spurious interrupt ID
— if the Distributor is forwarding an interrupt to the CPU interface, that the interface cannot signal

because GICC_CTLR.Enable is set to 0, it is IMPLEMENTATION DEFINED whether a read of
GICC_HPPIR returns the ID of that interrupt, or a spurious interrupt ID.

Note
 The EnableGrp1 bit in the Non-secure copies of the GICD_CTLR and GICC_CTLR registers are cleared to 0 on
reset. This means that software can program the Distributor and CPU interface registers before enabling the GIC.

See Distributor Control Register, GICD_CTLR on page 4-85 and CPU Interface Control Register, GICC_CTLR on
page 4-125 for more information.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-79
ID072613 Non-Confidential

4 Programmers’ Model
4.2 Effect of the GIC Security Extensions on the programmers’ model
4.2 Effect of the GIC Security Extensions on the programmers’ model

Note
 For an overview of the GIC Security Extensions, see Security Extensions support on page 1-16.

If the GIC implements the Security Extensions, the GICD_TYPER.SecurityExtn bit is RAO.

The GIC Security Extensions provide the following features:
• The GIC must support interrupt grouping, and:

— the GIC might implement some interrupts as always Group 0, or as always Group 1
— otherwise, software configures each interrupt as Group 0 or Group 1
— some aspects of interrupt handling depend on whether interrupts are Group 0 or Group 1.

• Register implementations that are consistent with those on a processor that implements the ARM Security
Extensions, with banked, Common, and Secure registers, as described in this section. The GIC Security
Extensions recognise that register accesses are either Secure or Non-secure, see Processor security state and
Secure and Non-secure GIC accesses on page 1-20, and that the security level of the access can determine
the required response.

Note
 • In a GICv1 implementation, interrupt grouping is a feature of the GIC Security Extensions. All GICv2

implementations include support for interrupt grouping, regardless of whether they include the GIC Security
Extensions.

• When a processor that implements the ARM Security Extensions is connected to the GIC, Secure software
executing on the processor usually accesses the GIC using only Secure accesses.

The ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition defines the following ARM Security
Extensions register types:
Banked The device implements Secure and Non-secure copies of the register. The register bit assignments

can differ in the Secure and Non-secure copies of a register. A Secure access always accesses the
Secure copy of the register, and a Non-secure access always accesses the Non-secure copy.

Note
 The GIC can also bank registers when implemented as part of a multiprocessor system, where

registers associated with PPIs or SGIs are banked to provide a separate copy for each connected
processor.

Secure The register is accessible only from a Secure access. The address of a Secure register is RAZ/WI to
any Non-secure access.

Common The register is accessible from both Secure and Non-secure accesses. The access permissions of
some or all fields in the register might depend on whether the access is Secure or Non-secure.

In addition, in a GIC that implements the GIC Security Extensions, the priority range available for Group 1
interrupts is half the range available for Group 0 interrupts, see Interrupt grouping and interrupt prioritization on
page 3-53.

Table 4-3 shows the registers that are implemented differently as part of the GIC Security Extensions. All registers
not listed in Table 4-3 are Common registers.

Table 4-3 Registers implemented differently when the GIC includes the GIC Security Extensions

Register Type Description Effect

GICD_CTLR Banked Distributor Control Register Register is bankeda

GICD_TYPER Common Interrupt Controller Type Register Adds the LSPI field

GICD_IGROUPRn Secure Interrupt Group Registers Register is Secure
4-80 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.2 Effect of the GIC Security Extensions on the programmers’ model
The following sections give more information about the effect of the GIC Security Extensions on the GIC
programmers’ model:
• Non-secure access to register fields for Group 0 interrupt priorities
• Configuration lockdown on page 4-82.

4.2.1 Non-secure access to register fields for Group 0 interrupt priorities

Processor security state and Secure and Non-secure GIC accesses on page 1-20 provides definitions of Secure
software and Secure and Non-secure accesses.

The GIC Security Extensions support the use of Group 0 interrupts as Secure interrupts, and Group 1 interrupts as
Non-secure interrupts. This means that the register fields associated with Group 0 interrupts are RAZ/WI to
Non-secure accesses, and in addition:

Non-secure access to a priority field in the GICD_IPRIORITYRn

If the priority field corresponds to a Group 1 interrupt, the access operates as defined by the
Non-secure view of interrupt priority, see Software views of interrupt priority in a GIC that includes
the Security Extensions on page 3-53.

Non-secure access to the GICC_PMR and GICC_RPR
• If the current priority mask value is in the range 0x00-0x7F:

— a read access returns the value 0x00
— the GIC ignores a write access to the GICC_PMR.

• If the current priority mask value is in the range 0x80-0xFF:
— A read access returns the Non-secure view of the current value.
— A write access to the GICC_PMR succeeds, based on the Non-secure view of the

priority mask value written to the register. This means a Non-secure write cannot set
a priority mask value in the rage 0x00-0x7F.

The pseudocode in The effect of the GIC Security Extensions on accesses to prioritization registers on page 3-66
describes accesses to the GICD_IPRIORITYRn, GICC_PMR, and GICC_RPR when the GIC implements the
Security Extensions.

GICD_SGIR Common Software Generated Interrupt Register Adds the NSATT bit

GICC_CTLR Banked CPU Interface Control Register Register is bankeda

GICC_BPR Banked Binary Point Register Register is bankeda

GICC_ABPR Secure Aliased Binary Point Register Register is Secure

GICC_AIAR Secure Aliased Interrupt Acknowledge Register Register is Secure

GICC_AEOIR Secure Aliased End of Interrupt Register Register is Secure

GICC_AHPPIR Secure Aliased Highest Priority Pending Interrupt Register Register is Secure

GICC_NSAPRn Secure Non-secure Active Priorities Registers Register is Secure

a. For more information, see Register banking on page 4-77.

Table 4-3 Registers implemented differently when the GIC includes the GIC Security Extensions (continued)

Register Type Description Effect
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-81
ID072613 Non-Confidential

4 Programmers’ Model
4.2 Effect of the GIC Security Extensions on the programmers’ model
4.2.2 Configuration lockdown

A GIC implementation that includes the GIC Security Extensions can implement configuration lockdown. This
provides a control signal that the system can assert to prevent write access to:

• the register fields controlling a configured range of SPIs, when those SPIs are configured as Group 0
interrupts

• some configuration registers.

When the control signal is asserted, the affected register fields and registers are described as being locked down.

Lockdown is controlled by an active HIGH disable signal, CFGSDISABLE. That is, the system asserts
CFGSDISABLE HIGH to disable write access to the register fields and registers.

The SPIs that can be locked down are called lockable SPIs (LSPIs). The number of LSPIs is IMPLEMENTATION
DEFINED, between 0 and 31:

• If the GIC supports any LSPIs then the first possible LSPI has Interrupt ID 32

• The GICD_TYPER.LSPI field defines the maximum number of LSPIs. If GICD_TYPER.LSPI is greater
than 0 then the possible LSPIs have interrupt IDs 32 to (31+(GICD_TYPER.LSPI)).

Note
 GICD_TYPER.LSPI only defines the range of possible LSPIs. The GIC might not support all the interrupts

in this range.

If GICD_TYPER.LSPI is 0 lockdown is not supported. This means software cannot lockdown any control registers
if the GIC does not implement any LSPIs.

When the SPI control fields and configuration registers are locked down, the GIC prevents write accesses to:

• The EnableGrp0 bit of the Secure copy of GICD_CTLR.

• The following bits in the Secure copy of GICC_CTLR:
— EOImodeS
— IRQBypDisGrp0
— FIQBypDisGrp0
— CBPR
— FIQEn
— AckCtl
— EnableGrp0

See CPU Interface Control Register, GICC_CTLR on page 4-125.

• Fields in the GICD_ISENABLERn, GICD_ICENABLERn, GICD_ISPENDRn, GICD_ICPENDRn,
GICD_ISACTIVERn, GICD_ICACTIVERn, GICD_IPRIORITYRn, GICD_ITARGETSRn, and
GICD_ICFGRn registers that correspond to Lockable SPIs that are configured as Group 0:

• Fields in the GICD_IGROUPRn registers that correspond to lockable SPIs that are configured as Group 0. If
a lockable SPI is reconfigured from Group 1 to Group 0 while CFGSDISABLE remains HIGH, the GIC
prevents any more writes to GICD_IGROUPRn fields that correspond to that SPI, and the SPI becomes
locked.

The GIC ignores any write to a locked down register or register field.

Note
 • ARM recommends that, during the system boot process, the system reads the GICD_TYPER.LSPI field to

find the number of lockable SPIs, programs the registers and register fields that can be locked down, and then
asserts CFGSDISABLE HIGH. Normally, this means that the Secure boot sequence that follows a full
system reset must run appropriate Secure configuration code.
4-82 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.2 Effect of the GIC Security Extensions on the programmers’ model
• ARM strongly recommends that when CFGSDISABLE is first asserted HIGH during the system boot
process, the system ensures CFGSDISABLE cannot be deasserted except during a processor power-down
or reset sequence.

4.2.3 Effect of the Virtualization Extensions on the programmers’ model

The GIC Virtualization Extensions add the GIC virtual interface control registers and the virtual CPU interface
registers to the programmers' model. See Chapter 5 GIC Support for Virtualization for more information.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-83
ID072613 Non-Confidential

4 Programmers’ Model
4.3 Distributor register descriptions
4.3 Distributor register descriptions
The following sections describe the Distributor registers:
• Distributor Control Register, GICD_CTLR on page 4-85
• Interrupt Controller Type Register, GICD_TYPER on page 4-88
• Distributor Implementer Identification Register, GICD_IIDR on page 4-90
• Interrupt Group Registers, GICD_IGROUPRn on page 4-91
• Interrupt Set-Enable Registers, GICD_ISENABLERn on page 4-93
• Interrupt Clear-Enable Registers, GICD_ICENABLERn on page 4-95
• Interrupt Set-Pending Registers, GICD_ISPENDRn on page 4-97
• Interrupt Clear-Pending Registers, GICD_ICPENDRn on page 4-99
• Interrupt Set-Active Registers, GICD_ISACTIVERn on page 4-102
• Interrupt Clear-Active Registers, GICD_ICACTIVERn on page 4-103
• Interrupt Priority Registers, GICD_IPRIORITYRn on page 4-104
• Interrupt Processor Targets Registers, GICD_ITARGETSRn on page 4-106
• Interrupt Configuration Registers, GICD_ICFGRn on page 4-109
• Non-secure Access Control Registers, GICD_NSACRn on page 4-111
• Software Generated Interrupt Register, GICD_SGIR on page 4-113
• SGI Clear-Pending Registers, GICD_CPENDSGIRn on page 4-115
• SGI Set-Pending Registers, GICD_SPENDSGIRn on page 4-117
• Identification registers on page 4-119.

See Distributor register map on page 4-74 for address offset and reset information for these registers.
4-84 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.3 Distributor register descriptions
4.3.1 Distributor Control Register, GICD_CTLR

The GICD_CTLR characteristics are:

Purpose Enables the forwarding of pending interrupts from the Distributor to the CPU interfaces.

Usage constraints If the GIC implements the Security Extensions with configuration lockdown, the system can
lock down the Secure GICD_CTLR, see Configuration lockdown on page 4-82.

Configurations This register is available in all configurations of the GIC. If the GIC implements the
Security Extensions, this register is banked, see Register banking on page 4-77.

Attributes See the register summary in Table 4-1 on page 4-75.

Figure 4-1 and Table 4-4 show the GICD_CTLR bit assignments for:
• a GICv1 implementation that does not include the GIC Security Extensions
• the Non-secure copy of the register in an implementation that includes the GIC Security Extensions.

Figure 4-1 GICD_CTLR bit assignments, GICv1 without Security Extensions or Non-secure

Figure 4-2 and Table 4-5 on page 4-86 shows the GICD_CTLR bit assignments for:

• Any GICv2 implementation. If the implementation includes the Security Extensions then these assignments
apply only to the Secure copy of the register.

• The Secure copy of the register in a GICv1 implementation that includes the Security Extensions.

Figure 4-2 GICD_CTLR bit assignments, GICv2, and GICv1 Secure copy

Table 4-4 GICD_CTLR bit assignments, GICv1 without Security Extensions or Non-secure

Bits Name Function

[31:1] - Reserved.

[0] Enablea

a. Bit name is IMPLEMENTATION DEFINED in a GICv1 implementation that includes the Security Extensions.

Global enable for forwarding pending interrupts from the Distributor to the CPU interfaces. In the
Non-secure copy of this register in an implementation that includes the Security Extensions, this bit controls
only the forwarding of Group 1 interrupts:
0 interrupts not forwarded.
1 interrupts forwarded, subject to the priority rules.
See Enabling and disabling the Distributor and CPU interfaces on page 4-77 for more information about
this bit.

Reserved

31 1 0

Enablea

a Bit name is IMPLEMENTATION DEFINED in an implementation that includes the Security Extensions

Reserved

31 1 0

EnableGrp1a

EnableGrp0a

2

a In a GICv1 implementation that includes the Security Extensions:
 - Bit[0] is named Enable
 - Bit[1] is IMPLEMENTATION DEFINED.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-85
ID072613 Non-Confidential

4 Programmers’ Model
4.3 Distributor register descriptions
When any of the Distributor global enable bits are set to 0, disabling the Distributor functions, other GIC register
read and writes still operate normally. This means software can change the state of PPIs and SPIs before re-enabling
the Distributor. For example, software can:
• Make an interrupt pending by writing to the corresponding GICD_ISPENDRn.
• Remove the active state from an interrupt by writing to the corresponding GICC_EOIR or GICC_AEOIR.

Note
 Setting a Distributor global enable bit to 0 disables forwarding of interrupts to the CPU interfaces. In addition:

• When forwarding of pending interrupts is disabled for Group 0 or Group 1 interrupts, it is IMPLEMENTATION
DEFINED whether an edge-triggered interrupt signal sets an edge-triggered interrupt in a disabled group to the
pending state.

• In GICv2, software can manage SGI pending state using the Interrupt Set-Pending Register,
GICD_ISPENDRn and Interrupt Clear-Pending Register, GICD_ICPENDRn. However, in GICv1, the GIC
clears the pending state of an SGI only when the SGI becomes active, and therefore software cannot clear the
pending state of an SGI.

• In GICv2, software can manage the active state using the Interrupt Set-Active Registers,
GICD_ISACTIVERn and the Interrupt Clear-Active Registers, GICD_ICACTIVERn.

If the forwarding of only one group of interrupts is disabled, and the highest priority pending interrupt is in the
disabled group:

• In GICv1, it is IMPLEMENTATION DEFINED whether the Distributor forwards any pending interrupts of
Sufficient priority from the other group, to the CPU interfaces.

• In GICv2, the Distributor does not forward any interrupts, from either group, to the CPU interfaces.

When the GICD_CTLR.{EnableGrp1, EnableGrp0} settings mean the Distributor does not forward any pending
interrupts to the CPU interfaces, a read of a GICC_IAR or GICC_AIAR register returns a spurious interrupt ID.

Table 4-5 GICD_CTLR bit assignments, GICv2, and GICv1 Secure copy

Bits Name Function

[31:2] - Reserved.

[1] EnableGrp1 Global enable for forwarding pending Group 1 interrupts from the Distributor to the CPU interfaces:
0 Group 1 interrupts not forwarded.
1 Group 1 interrupts forwarded, subject to the priority rules.

Note
 In a GICv1 implementation that includes the Security Extensions:
• Whether this bit is implemented, and the bit name if implemented, is IMPLEMENTATION DEFINED. If

not implemented the bit is reserved.
• When the bit is implemented, it is an alias of bit[0] of the Non-secure copy of the register.

[0] EnableGrp0 Global enable for forwarding pending Group 0 interrupts from the Distributor to the CPU interfaces:
0 Group 0 interrupts not forwarded.
1 Group 0 interrupts forwarded, subject to the priority rules.
4-86 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.3 Distributor register descriptions
Note
 Interrupts are, by definition, asynchronous events and register values take a small but finite time to update. Software
must consider this state change associated with the reporting of pending or spurious interrupts on a CPU interface
during this transition.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-87
ID072613 Non-Confidential

4 Programmers’ Model
4.3 Distributor register descriptions
4.3.2 Interrupt Controller Type Register, GICD_TYPER

The GICD_TYPER characteristics are:

Purpose Provides information about the configuration of the GIC. It indicates:

• whether the GIC implements the Security Extensions

• the maximum number of interrupt IDs that the GIC supports

• the number of CPU interfaces implemented

• if the GIC implements the Security Extensions, the maximum number of
implemented Lockable Shared Peripheral Interrupts (LSPIs).

Usage constraints No usage constraints.

Configurations This register is available in all configurations of the GIC. If the GIC implements the
Security Extensions this register is Common.

Attributes See the register summary in Table 4-1 on page 4-75.

Figure 4-3 shows the GICD_TYPER bit assignments.

Figure 4-3 GICD_TYPER bit assignments

Table 4-6 shows the GICD_TYPER bit assignments.

31 0

LSPIa

16 11

Reserved

15 10 9 8 7 5 4

ITLinesNumber

SecurityExtn

CPUNumber

a Implemented only if the GIC implements the Security Extensions, Reserved otherwise

Reserved

Table 4-6 GICD_TYPER bit assignments

Bits Name Function

[31:16] - Reserved.

[15:11] LSPI If the GIC implements the Security Extensions, the value of this field is the maximum number of
implemented lockable SPIs, from 0 (0b00000) to 31 (0b11111), see Configuration lockdown on
page 4-82. If this field is 0b00000 then the GIC does not implement configuration lockdown.
If the GIC does not implement the Security Extensions, this field is reserved.

[10] SecurityExtn Indicates whether the GIC implements the Security Extensions.
0 Security Extensions not implemented.
1 Security Extensions implemented.
4-88 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.3 Distributor register descriptions
The ITLinesNumber field only indicates the maximum number of SPIs that the GIC might support. This value
determines the number of implemented interrupt registers, that is, the number of instances of the following registers:
• GICD_IGROUPRn
• GICD_ISENABLERn
• GICD_ICENABLERn
• GICD_ISPENDRn
• GICD_ICPENDRn
• GICD_ISACTIVERn
• GICD_IPRIORITYRn
• GICD_ITARGETSRn
• GICD_ICFGRn.

The GIC architecture does not require a GIC to support a continuous range of SPI interrupt IDs, and the supported
SPI interrupt ID range is likely to be non-continuous. Software must check which SPI interrupt IDs are supported,
up to the maximum value indicated by the ITLinesNumber field, see Identifying the supported interrupts on
page 3-35.

[9:8] - Reserved.

[7:5] CPUNumber Indicates the number of implemented CPU interfaces. The number of implemented CPU interfaces is
one more than the value of this field, for example if this field is 0b011, there are four CPU interfaces. If
the GIC implements the Virtualization Extensions, this is also the number of virtual CPU interfaces.

[4:0] ITLinesNumber Indicates the maximum number of interrupts that the GIC supports. If ITLinesNumber=N, the
maximum number of interrupts is 32(N+1). The interrupt ID range is from 0 to (number of IDs – 1). For
example:
0b00011 Up to 128 interrupt lines, interrupt IDs 0-127.
The maximum number of interrupts is 1020 (0b11111). See the text in this section for more information.
Regardless of the range of interrupt IDs defined by this field, interrupt IDs 1020-1023 are reserved for
special purposes, see Special interrupt numbers on page 3-43 and Interrupt IDs on page 2-24.

Table 4-6 GICD_TYPER bit assignments (continued)

Bits Name Function
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-89
ID072613 Non-Confidential

4 Programmers’ Model
4.3 Distributor register descriptions
4.3.3 Distributor Implementer Identification Register, GICD_IIDR

The GICD_IIDR characteristics are:

Purpose Provides information about the implementer and revision of the Distributor.

Usage constraints No usage constraints.

Configurations This register is available in all configurations of the GIC. If the GIC implements the
Security Extensions this register is Common.

Attributes See the register summary in Table 4-1 on page 4-75.

Figure 4-4 shows the GICD_IIDR bit assignments.

Figure 4-4 GICD_IIDR bit assignments

Table 4-7 shows the GICD_IIDR bit assignments.

Reserved RevisionVariant ImplementerProductID

31 024 1123 1220 19 16 15

Table 4-7 GICD_IIDR bit assignments

Bits Name Function

[31:24] ProductID An IMPLEMENTATION DEFINED product identifier.

[23:20] - Reserved.

[19:16] Variant An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish product variants,
or major revisions of a product.a

[15:12] Revision An IMPLEMENTATION DEFINED revision number. Typically, this field is used to distinguish minor revisions
of a product.a

[11:0] Implementer Contains the JEP106 code of the company that implemented the GIC Distributor:
Bits [11:8] The JEP106 continuation code of the implementer. For an ARM implementation, this field

is 0x4.
Bits [7] Always 0.
Bits [6:0] The JEP106 identity code of the implementer. For an ARM implementation, bits[7:0] are

0x3B.

a. This field is not used to distinguish between GICv1 and GICv2 implementations.
4-90 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.3 Distributor register descriptions
4.3.4 Interrupt Group Registers, GICD_IGROUPRn

The GICD_IGROUPR characteristics are:

Purpose The GICD_IGROUPR registers provide a status bit for each interrupt supported by the GIC.
Each bit controls whether the corresponding interrupt is in Group 0 or Group 1.

Usage constraints In implementations that include the GIC Security Extensions, accessible by Secure accesses
only. The register addresses are RAZ/WI to Non-secure accesses.

A register bit corresponding to an unimplemented interrupt is RAZ/WI.

If the GIC implements configuration lockdown, the system can lockdown the group status
bits for lockable SPIs that are configured as Group 0, see Configuration lockdown on
page 4-82.

Configurations In GICv1, only implemented if the GIC implements the Security Extensions. If a GICv1
implementation does not include the Security Extensions the GICD_IGROUPR addresses
are RAZ/WI.

Note
 Typically, when used with a processor that implements the ARM Security Extensions,

Group 0 interrupts are Secure interrupts, and Group 1 interrupts are Non-secure interrupts,
see Security Extensions support on page 1-16 for more information.

In GICv2, these registers are always implemented.

The number of implemented GICD_IGROUPR registers is
(GICD_TYPER.ITLinesNumber + 1). The implemented GICD_IGROUPR registers
number upwards from GICD_IGROUPR0. If the GIC implements the Security Extensions,
these are Secure registers.

In a multiprocessor implementation, GICD_IGROUPR0 is banked for each connected
processor. This register holds the group status bits for interrupts 0-31.

Attributes See the register summary in Table 4-1 on page 4-75, and GICD_IGROUPR0 reset value on
page 4-92.

Figure 4-5 shows the GICD_IGROUPR bit assignments.

Figure 4-5 GICD_IGROUPR bit assignments

Table 4-8 shows the GICD_IGROUPR bit assignments.

31 0

Group status bits

Table 4-8 GICD_IGROUPR bit assignments

Bits Name Function

[31:0] Group status bits For each bit:
0 The corresponding interrupt is Group 0.
1 The corresponding interrupt is Group 1.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-91
ID072613 Non-Confidential

4 Programmers’ Model
4.3 Distributor register descriptions
Note
 On start-up or reset, each interrupt with ID32 or higher resets as Group 0 and therefore all SPIs are Group 0 unless
the system reprograms the appropriate GICD_IGROUPR bit. See GICD_IGROUPR0 reset value for information
about the reset configuration of interrupts with IDs 0-31.

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:
• the corresponding GICD_IGROUPRn number, n, is given by n = m DIV 32
• the offset of the required GICD_IGROUPR is (0x080 + (4*n))
• the bit number of the required group status bit in this register is m MOD 32.

GICD_IGROUPR0 reset value

Typically, the reset value of all GICD_IGROUPR registers is zero, so that all interrupts are Group 0 unless
reprogrammed as Group 1 by Secure accesses to the appropriate GICD_IGROUPR registers.

For GICv2 implementations that do not include the Security Extensions, the GICD_IGROUPRn reset values are
IMPLEMENTATION DEFINED.

A multiprocessor implementation that supports the Security Extensions might include one or more Non-secure
processors, meaning processors that cannot make Secure accesses to the GIC. In this situation only, a GIC can
implement a Secure IMPLEMENTATION DEFINED mechanism that resets to 1 the GICD_IGROUPR0 bits for the
peripheral interrupts and SGIs of any Non-secure processor. This mechanism must apply only to:
• a banked GICD_IGROUPR0 that corresponds to a Non-secure processor
• bits in that banked GICD_IGROUPR0 that correspond to implemented interrupts.
4-92 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.3 Distributor register descriptions
4.3.5 Interrupt Set-Enable Registers, GICD_ISENABLERn

The GICD_ISENABLER characteristics are:

Purpose The GICD_ISENABLERs provide a Set-enable bit for each interrupt supported by the GIC.
Writing 1 to a Set-enable bit enables forwarding of the corresponding interrupt from the
Distributor to the CPU interfaces. Reading a bit identifies whether the interrupt is enabled.

Usage constraints A register bit corresponding to an unimplemented interrupt is RAZ/WI.

If the GIC implements the Security Extensions:

• a register bit that corresponds to a Group 0 interrupt is RAZ/WI to Non-secure
accesses

• if the GIC implements configuration lockdown, the system can lock down the
Set-enable bits for the lockable SPIs that are configured as Group 0, see
Configuration lockdown on page 4-82.

Whether implemented SGIs are permanently enabled, or can be enabled and disabled by
writes to GICD_ISENABLER0 and GICD_ICENABLER0, is IMPLEMENTATION DEFINED.

Configurations These registers are available in all configurations of the GIC. If the GIC implements the
Security Extensions these registers are Common.

The number of implemented GICD_ISENABLERs is (GICD_TYPER.ITLinesNumber+1).
The implemented GICD_ISENABLERs number upwards from GICD_ISENABLER0.

In a multiprocessor implementation, GICD_ISENABLER0 is banked for each connected
processor. This register holds the Set-enable bits for interrupts 0-31.

Attributes See the register summary in Table 4-1 on page 4-75.

Figure 4-6 shows the GICD_ISENABLER bit assignments.

Figure 4-6 GICD_ISENABLER bit assignments

Table 4-9 shows the GICD_ISENABLER bit assignments.

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:
• the corresponding GICD_ISENABLER number, n, is given by n = m DIV 32
• the offset of the required GICD_ISENABLER is (0x100 + (4*n))
• the bit number of the required Set-enable bit in this register is m MOD 32.

Set-enable bits

31 0

Table 4-9 GICD_ISENABLER bit assignments

Bits Name Function

[31:0] Set-enable bits For SPIs and PPIs, each bit controls the forwarding of the corresponding interrupt from the Distributor to
the CPU interfaces:
Reads 0 Forwarding of the corresponding interrupt is disabled.

1 Forwarding of the corresponding interrupt is enabled.
Writes 0 Has no effect.

1 Enables the forwarding of the corresponding interrupt.
After a write of 1 to a bit, a subsequent read of the bit returns the value 1.

For SGIs the behavior of the bit on reads and writes is IMPLEMENTATION DEFINED.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-93
ID072613 Non-Confidential

4 Programmers’ Model
4.3 Distributor register descriptions
At start-up, and after a reset, a processor can use this register to discover which peripheral interrupt IDs the GIC
supports. If the processor and the GIC both implement the Security Extensions it must do this for the Secure view
of the available interrupts, and Non-secure software running on the processor must do this discovery after the Secure
software has configured interrupts as Group 0 (Secure) and Group 1 (Non-secure). For more information see
Identifying the supported interrupts on page 3-35.

Note
 Disabling an interrupt only disables the forwarding of the interrupt from the Distributor to any CPU interface. It
does not prevent the interrupt from changing state, for example becoming pending, or active and pending if it is
already active.
4-94 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.3 Distributor register descriptions
4.3.6 Interrupt Clear-Enable Registers, GICD_ICENABLERn

The GICD_ICENABLER characteristics are:

Purpose The GICD_ICENABLERs provide a Clear-enable bit for each interrupt supported by the
GIC. Writing 1 to a Clear-enable bit disables forwarding of the corresponding interrupt from
the Distributor to the CPU interfaces. Reading a bit identifies whether the interrupt is
enabled.

Usage constraints A register bit corresponding to an unimplemented interrupt is RAZ/WI.

If the GIC implements the Security Extensions:

• a register bit that corresponds to a Group 0 interrupt is RAZ/WI to Non-secure
accesses

• if the GIC implements configuration lockdown, the system can lock down the
Clear-enable bits for the lockable SPIs that are configured as Group 0, see
Configuration lockdown on page 4-82.

Whether implemented SGIs are permanently enabled, or can be enabled and disabled by
writes to GICD_ISENABLER0 and GICD_ICENABLER0, is IMPLEMENTATION DEFINED.

Configurations These registers are available in all configurations of the GIC. If the GIC implements the
Security Extensions these registers are Common.

The number of implemented GICD_ICENABLERs is (GICD_TYPER.ITLinesNumber+1).
The implemented GICD_ICENABLERs number upwards from GICD_ICENABLER0.

In a multiprocessor implementation, GICD_ICENABLER0 is banked for each connected
processor. This register holds the Clear-enable bits for interrupts 0-31.

Attributes See the register summary in Table 4-1 on page 4-75.

Figure 4-7 shows the GICD_ICENABLER bit assignments.

Figure 4-7 GICD_ICENABLER bit assignments

Table 4-10 shows the GICD_ICENABLER bit assignments.

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:
• the corresponding GICD_ICENABLERn number, n, is given by m = n DIV 32
• the offset of the required GICD_ICENABLERn is (0x180 + (4*n))
• the bit number of the required Clear-enable bit in this register is m MOD 32.

Clear-enable bits

31 0

Table 4-10 GICD_ICENABLER bit assignments

Bits Name Function

[31:0] Clear-enable bits For SPIs and PPIs, each bit controls the forwarding of the corresponding interrupt from the Distributor to
the CPU interfaces:
Reads 0 Forwarding of the corresponding interrupt is disabled.

1 Forwarding of the corresponding interrupt is enabled.
Writes 0 Has no effect.

1 Disables the forwarding of the corresponding interrupt.
After a write of 1 to a bit, a subsequent read of the bit returns the value 0.

For SGIs the behavior of the bit on reads and writes is IMPLEMENTATION DEFINED.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-95
ID072613 Non-Confidential

4 Programmers’ Model
4.3 Distributor register descriptions
Note
 Writing a 1 to an GICD_ICENABLERn bit only disables the forwarding of the corresponding interrupt from the
Distributor to any CPU interface. It does not prevent the interrupt from changing state, for example becoming
pending, or active and pending if it is already active.
4-96 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.3 Distributor register descriptions
4.3.7 Interrupt Set-Pending Registers, GICD_ISPENDRn

The GICD_ISPENDR characteristics are:

Purpose The GICD_ISPENDRs provide a Set-pending bit for each interrupt supported by the GIC.
Writing 1 to a Set-pending bit sets the status of the corresponding peripheral interrupt to
pending. Reading a bit identifies whether the interrupt is pending.

Usage constraints A register bit corresponding to an unimplemented interrupt is RAZ/WI.

If the GIC implements the Security Extensions:

• a register bit that corresponds to a Group 0 interrupt is RAZ/WI to Non-secure
accesses

• if the GIC implements configuration lockdown, the system can lock down the
Set-pending bits for the lockable SPIs that are configured as Group 0, see
Configuration lockdown on page 4-82.

Set-pending bits for SGIs are read-only and ignore writes.

Configurations These registers are available in all configurations of the GIC. If the GIC implements the
Security Extensions these registers are Common.

The number of implemented GICD_ISPENDRs is (GICD_TYPER.ITLinesNumber+1).
The implemented GICD_ISPENDRs number upwards from GICD_ISPENDR0.

In a multiprocessor implementation, GICD_ISPENDR0 is banked for each connected
processor. This register holds the Set-pending bits for interrupts 0-31.

Attributes See the register summary in Table 4-1 on page 4-75.

Figure 4-8 shows the GICD_ISPENDR bit assignments.

Figure 4-8 GICD_ISPENDR bit assignments

Table 4-11 on page 4-98 shows the GICD_ISPENDR bit assignments.

Set-pending bits

31 0
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-97
ID072613 Non-Confidential

4 Programmers’ Model
4.3 Distributor register descriptions
For interrupt ID m, when DIV and MOD are the integer division and modulo operations:
• the corresponding GICD_ISPENDR number, n, is given by n = m DIV 32
• the offset of the required GICD_ISPENDR is (0x200 + (4*n))
• the bit number of the required Set-pending bit in this register is m MOD 32.

Table 4-11 GICD_ISPENDR bit assignments

Bits Name Function

[31:0] Set-pending bits For each bit:
Reads 0 The corresponding interrupt is not pending on any processor.

1 • For PPIs and SGIs, the corresponding interrupt is pendinga on this
processor.

• For SPIs, the corresponding interrupt is pendinga on at least one
processor.

Writes For SPIs and PPIs:
0 Has no effect.
1 The effect depends on whether the interrupt is edge-triggered or

level-sensitive:
Edge-triggered

Changes the status of the corresponding interrupt to:
• pending if it was previously inactive
• active and pending if it was previously active.
Has no effect if the interrupt is already pendinga.

Level sensitive
If the corresponding interrupt is not pendinga, changes the status
of the corresponding interrupt to:
• pending if it was previously inactive
• active and pending if it was previously active.
If the interrupt is already pendinga:
• because of a write to the GICD_ISPENDR, the write has

no effect
• because the corresponding interrupt signal is asserted, the

write has no effect on the status of the interrupt, but the
interrupt remains pendinga if the interrupt signal is
deasserted.

For more information see Control of the pending status of
level-sensitive interrupts on page 4-100.

For SGIs, the write is ignored. SGIs have their own Set-Pending registers, see SGI
Set-Pending Registers, GICD_SPENDSGIRn on page 4-117.

a. Pending interrupts include interrupts that are active and pending.
4-98 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.3 Distributor register descriptions
4.3.8 Interrupt Clear-Pending Registers, GICD_ICPENDRn

The GICD_ICPENDR characteristics are:

Purpose The GICD_ICPENDRs provide a Clear-pending bit for each interrupt supported by the GIC.
Writing 1 to a Clear-pending bit clears the pending state of the corresponding peripheral
interrupt. Reading a bit identifies whether the interrupt is pending.

Usage constraints A register bit corresponding to an unimplemented interrupt is RAZ/WI.

If the GIC implements the Security Extensions:

• a register bit that corresponds to a Group 0 interrupt is RAZ/WI to Non-secure
accesses

• if the GIC implements configuration lockdown, the system can lock down the
Clear-pending bits for the lockable SPIs that are configured as Group 0, see
Configuration lockdown on page 4-82.

Clear-pending bits for SGIs are read-only and ignore writes.

Configurations These registers are available in all configurations of the GIC. If the GIC implements the
Security Extensions these registers are Common.

The number of implemented GICD_ICPENDRs is (GICD_TYPER.ITLinesNumber+1).
The implemented GICD_ICPENDRs number upwards from GICD_ICPENDR0.

In a multiprocessor implementation, GICD_ICPENDR0 is banked for each connected
processor. This register holds the Clear-pending bits for interrupts 0-31.

Attributes See the register summary in Table 4-1 on page 4-75.

Figure 4-9 shows the GICD_ICPENDR bit assignments.

Figure 4-9 GICD_ICPENDR bit assignments

Table 4-12 on page 4-100 shows the GICD_ICPENDR bit assignments.

Clear-pending bits

31 0
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-99
ID072613 Non-Confidential

4 Programmers’ Model
4.3 Distributor register descriptions
For interrupt ID m, when DIV and MOD are the integer division and modulo operations:
• the corresponding GICD_ICPENDR number, n, is given by n = m DIV 32
• the offset of the required GICD_ICPENDR is (0x280 + (4*n))
• the bit number of the required Set-pending bit in this register is m MOD 32.

Control of the pending status of level-sensitive interrupts

This subsection describes the status of an interrupt as includes pending if the interrupt status is one of:
• pending
• active and pending.

For an edge-triggered interrupt, the includes pending status is latched on either a write to the GICD_ISPENDRn or
the assertion of the interrupt signal to the GIC. However, for a level-sensitive interrupt, the includes pending status
either:
• is latched on a write to the GICD_ISPENDRn
• follows the state of the interrupt signal to the GIC, without any latching.

This means that the operation of the Set-pending and Clear-pending registers is more complicated for level-sensitive
interrupts. Figure 4-10 on page 4-101 shows the logic of the pending status of a level-sensitive interrupt. The logical
output status_includes_pending is TRUE when the interrupt status includes pending, and FALSE otherwise.

Table 4-12 GICD_ICPENDR bit assignments

Bits Name Function

[31:0] Clear-pending
bits

For each bit:
Reads 0 The corresponding interrupt is not pending on any processor.

1 • For SGIs and PPIs, the corresponding interrupt is pendinga on this
processor.

• For SPIs, the corresponding interrupt is pendinga on at least one
processor.

Writes For SPIs and PPIs:
0 Has no effect.
1 The effect depends on whether the interrupt is edge-triggered or level-sensitive:

Edge-triggered
Changes the status of the corresponding interrupt to:
• inactive if it was previously pending
• active if it was previously active and pending.
Has no effect if the interrupt is not pending.

Level-sensitive
If the corresponding interrupt is pendinga only because of a write to
GICD_ISPENDRn, the write changes the status of the interrupt to:
• inactive if it was previously pending
• active if it was previously active and pending.
Otherwise the interrupt remains pending if the interrupt signal
remains asserted, see Control of the pending status of level-sensitive
interrupts

For SGIs, the write is ignored. SGIs have their own Clear-Pending registers, see SGI
Clear-Pending Registers, GICD_CPENDSGIRn on page 4-115.

a. Pending interrupts include interrupts that are active and pending.
4-100 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.3 Distributor register descriptions
Figure 4-10 Logic of the pending status of a level-sensitive interrupt

status_includes_pending
Interrupt signal to GIC

GICD_ICPENDR

GICD_ISPENDR Write 1 b

b The register ignores a write of 0

Valid a read of
GICC_IAR

a A read that acknowledges this interrupt

Write 1 b

Bits corresponding
to this interrupt

GICC_IAR: Interrupt Acknowledge Register
GICD_ICPENDR: Interrupt Clear-Pending Register
GICD_ISPENDR: Interrupt Set-Pending Register

Read

Read

D

ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-101
ID072613 Non-Confidential

4 Programmers’ Model
4.3 Distributor register descriptions
4.3.9 Interrupt Set-Active Registers, GICD_ISACTIVERn

The GICD_ISACTIVER characteristics are:

Purpose The GICD_ISACTIVERs provide a Set-active bit for each interrupt that the GIC supports.
Writing to a Set-active bit Activates the corresponding interrupt. These registers are used
when preserving and restoring GIC state.

In GICv1, the GICD_ISACTIVERn registers are the RO Active Bit Registers, ICDABRn.

Usage constraints A register bit corresponding to an unimplemented interrupt is RAZ/WI.

If the GIC implements the Security Extensions a register bit that corresponds to a Group 0
interrupt is RAZ to Non-secure accesses.

The bit reads as one if the status of the interrupt is active or active and pending. Read the
GICD_ISPENDRn or GICD_ICPENDRn to find the pending status of the interrupt.

Configurations These registers are available in all configurations of the GIC. If the GIC implements the
Security Extensions these registers are Common.

The number of implemented GICD_ISACTIVERs is (GICD_TYPER.ITLinesNumber+1).
The implemented GICD_ISACTIVERs number upwards from GICD_ISACTIVER0.

In a multiprocessor implementation, GICD_ISACTIVER0 is banked for each connected
processor. This register holds the Set-active bits for interrupts 0-31.

These registers are RO in GICv1 and RW in GICv2.

Attributes See the register summary in Table 4-1 on page 4-75.

Figure 4-11 shows the GICD_ISACTIVER bit assignments.

Figure 4-11 GICD_ISACTIVER bit assignments

Table 4-13 shows the GICD_ISACTIVER bit assignments.

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:
• the corresponding GICD_ISACTIVERn number, n, is given by n = m DIV 32
• the offset of the required GICD_ISACTIVERn is (0x300 + (4*n))
• the bit number of the required Set-active bit in this register is m MOD 32.

31 0

Set-active bits

Table 4-13 GICD_ISACTIVER bit assignments

Bits Name Function

[31:0] Set-active bits For each bit:
Reads 0 The corresponding interrupt is not activea.

1 The corresponding interrupt is activea.
Writes 0 Has no effect.

1 Activates the corresponding interrupt, if it is not already active. If the interrupt
is already active, the write has no effect.
After a write of 1 to this bit, a subsequent read of the bit returns the value 1.

a. Active interrupts include interrupts that are active and pending.
4-102 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.3 Distributor register descriptions
4.3.10 Interrupt Clear-Active Registers, GICD_ICACTIVERn

The GICD_ICACTIVER characteristics are:

Purpose The GICD_ICACTIVERs provide a Clear-active bit for each interrupt that the GIC
supports. Writing to a Clear-active bit Deactivates the corresponding interrupt. These
registers are used when preserving and restoring GIC state.

Usage constraints A register bit corresponding to an unimplemented interrupt is RAZ/WI.

If the GIC implements the Security Extensions, a register bit that corresponds to a Group 0
interrupt is RAZ/WI to Non-secure accesses.

Configurations These registers are present only in GICv2. The register locations are reserved in GICv1.

The number of implemented GICD_ICACTIVERs is (GICD_TYPER.ITLinesNumber+1).
The implemented GICD_ICACTIVERs number upwards from GICD_ICACTIVER0.

In a multiprocessor implementation, GICD_ICACTIVER0 is banked for each connected
processor. This register holds the Clear-active bits for interrupts 0-31.

Attributes See the register summary in Table 4-1 on page 4-75.

Figure 4-12 shows the GICD_ICACTIVER bit assignments.

Figure 4-12 GICD_ICACTIVER bit assignments

Table 4-14 shows the GICD_ICACTIVER bit assignments.

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:
• the corresponding GICD_ICACTIVERn number, n, is given by n = m DIV 32
• the offset of the required GICD_ICACTIVERn is (0x380 + (4*n))
• the bit number of the required Clear-active bit in this register is m MOD 32.

31 0

Clear-active bits

Table 4-14 GICD_ICACTIVER bit assignments

Bits Name Function

[31:0] Clear-active bits For each bit:
Reads 0 The corresponding interrupt is not activea.

1 The corresponding interrupt is activea.
Writes 0 Has no effect.

1 Deactivates the corresponding interrupt, if the interrupt is active. If the
interrupt is already deactivated, the write has no effect.
After a write of 1 to this bit, a subsequent read of the bit returns the value 0.

a. Active interrupts include interrupts that are active and pending.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-103
ID072613 Non-Confidential

4 Programmers’ Model
4.3 Distributor register descriptions
4.3.11 Interrupt Priority Registers, GICD_IPRIORITYRn

The GICD_IPRIORITYR characteristics are:

Purpose The GICD_IPRIORITYRs provide an 8-bit priority field for each interrupt supported by the
GIC. This field stores the priority of the corresponding interrupt.

Usage constraints These registers are byte-accessible.

A register field corresponding to an unimplemented interrupt is RAZ/WI.

A GIC might implement fewer than eight priority bits, but must implement at least bits [7:4]
of each field. In each field, unimplemented bits are RAZ/WI.

If the GIC implements the Security Extensions:

• a register field that corresponds to a Group 0 interrupt is RAZ/WI to Non-secure
accesses

• a Non-secure access to a field that corresponds to a Group 1 interrupt behaves as
described in Software views of interrupt priority in a GIC that includes the Security
Extensions on page 3-53

• if the GIC implements configuration lockdown, the system can lock down the
Priority fields for the lockable SPIs that are configured as Group 0, see Configuration
lockdown on page 4-82

It is IMPLEMENTATION DEFINED whether changing the value of a priority field changes the
priority of an active interrupt.

Configurations These registers are available in all configurations of the GIC. If the GIC implements the
Security Extensions these registers are Common.

The number of implemented GICD_IPRIORITYRs is
(8*(GICD_TYPER.ITLinesNumber+1)). The implemented GICD_IPRIORITYRs number
upwards from GICD_IPRIORITYR0.

In a multiprocessor implementation, GICD_IPRIORITYR0 to GICD_IPRIORITYR7 are
banked for each connected processor. These registers hold the Priority fields for interrupts
0-31.

Attributes See the register summary in Table 4-1 on page 4-75.

Figure 4-13 shows the GICD_IPRIORITYR bit assignments.

Figure 4-13 GICD_IPRIORITYR bit assignments

Table 4-15 shows the GICD_IPRIORITYR bit assignments.

31 7 08

Priority,
byte offset 0

Priority,
byte offset 1

Priority,
byte offset 2

Priority,
byte offset 3

15162324

Table 4-15 GICD_IPRIORITYR bit assignments

Bits Namea Function

[31:24] Priority, byte offset 3 Each priority field holds a priority value, from an IMPLEMENTATION DEFINED range. The lower the
value, the greater the priority of the corresponding interrupt. For more information see Interrupt
prioritization on page 3-44 and, if appropriate, Interrupt grouping and interrupt prioritization on
page 3-53.

[23:16] Priority, byte offset 2

[15:8] Priority, byte offset 1

[7:0] Priority, byte offset 0

a. Each field holds the priority value for a single interrupt. This section describes how the interrupt ID value determines the
GICD_IPRIORITYR register number and the byte offset of the priority field in that register.
4-104 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.3 Distributor register descriptions
For interrupt ID m, when DIV and MOD are the integer division and modulo operations:
• the corresponding GICD_IPRIORITYRn number, n, is given by n = m DIV 4
• the offset of the required GICD_IPRIORITYRn is (0x400 + (4*n))
• the byte offset of the required Priority field in this register is m MOD 4, where:

— byte offset 0 refers to register bits [7:0]
— byte offset 1 refers to register bits [15:8]
— byte offset 2 refers to register bits [23:16]
— byte offset 3 refers to register bits [31:24].

The following pseudocode shows the effects of the GIC Security Extensions on accesses to this register.

// PriorityRegRead()
// =================
//

// P_MASK used here to emphasize that the number of valid bits is IMPLEMENTATION DEFINED

bits(8) PriorityRegRead(integer InterruptID)

 read_value = ReadGICD_IPRIORITYR(InterruptID);
 if NS_access then // A non-secure GIC access.
 read_value<7:0> = LSL((read_value AND P_MASK), 1);
 if IsGrp0Int(InterruptID) then
 read_value = '00000000'; // Can't read a Group 0 priority value
 return(read_value);

// PriorityRegWrite()
// ==================
//

PriorityRegWrite(integer InterruptID, bits(8) value)

 if NS_access then // A non-secure GIC access.
 if !IsGrp0Int(InterruptID) then
 mod_write_val = ('10000000' OR LSR(value,1)) AND P_MASK;
 WriteGICD_IPRIORITYR(InterruptID, mod_write_val);
 else
 IgnoreWriteRequest();
 else // A secure GIC access.
 mod_write_val = value AND P_MASK;
 WriteGICD_IPRIORITYR(InterruptID, mod_write_val);
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-105
ID072613 Non-Confidential

4 Programmers’ Model
4.3 Distributor register descriptions
4.3.12 Interrupt Processor Targets Registers, GICD_ITARGETSRn

The GICD_ITARGETSR characteristics are:

Purpose The GICD_ITARGETSRs provide an 8-bit CPU targets field for each interrupt supported
by the GIC. This field stores the list of target processors for the interrupt. That is, it holds
the list of CPU interfaces to which the Distributor forwards the interrupt if it is asserted and
has sufficient priority.

Usage constraints For a multiprocessor implementation:

• These registers are byte-accessible.

• A register field corresponding to an unimplemented interrupt is RAZ/WI.

• GICD_ITARGETSR0 to GICD_ITARGETSR7 are read-only, and each field returns
a value that corresponds only to the processor reading the register.

• It is IMPLEMENTATION DEFINED which, if any, SPIs are statically configured in
hardware. The CPU targets field for such an SPI is read-only, and returns a value that
indicates the CPU targets for the interrupt.

• if the GIC implements the Security Extensions:

— a register field that corresponds to a Group 0 interrupt is RAZ/WI to
Non-secure accesses

— if the GIC implements configuration lockdown, the system can lock down the
CPU targets fields for the lockable SPIs that are configured as Group 0, see
Configuration lockdown on page 4-82.

See also The effect of changes to an GICD_ITARGETSR on page 4-108.

Note
 In a uniprocessor implementation, all interrupts target the one processor, and the

GICD_ITARGETSRs are RAZ/WI.

Configurations These registers are available in all configurations of the GIC. If the GIC implements the
Security Extensions these registers are Common.

The number of implemented GICD_ITARGETSRs is
(8*(GICD_TYPER.ITLinesNumber+1)). The implemented GICD_ITARGETSRs number
upwards from GICD_ITARGETSR0.

In a multiprocessor implementation, GICD_ITARGETSR0 to GICD_ITARGETSR7 are
banked for each connected processor. These registers hold the CPU targets fields for
interrupts 0-31.

Attributes See the register summary in Table 4-1 on page 4-75.

Figure 4-14 shows the GICD_ITARGETSR bit assignments, for a multiprocessor implementation.

Figure 4-14 GICD_ITARGETSR bit assignments

Table 4-16 on page 4-107 shows the GICD_ITARGETSR bit assignments, for a multiprocessor implementation.

31 7 08

CPU targets,
byte offset 0

CPU targets,
byte offset 1

CPU targets,
byte offset 2

CPU targets,
byte offset 3

15162324
4-106 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.3 Distributor register descriptions
Table 4-17 shows how each bit of a CPU targets field targets the interrupt at one of the CPU interfaces.

A CPU targets field bit that corresponds to an unimplemented CPU interface is RAZ/WI.

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:
• the corresponding GICD_ITARGETSRn number, n, is given by n = m DIV 4
• the offset of the required GICD_ITARGETSR is (0x800 + (4*n))
• the byte offset of the required Priority field in this register is m MOD 4, where:

— byte offset 0 refers to register bits [7:0]
— byte offset 1 refers to register bits [15:8]
— byte offset 2 refers to register bits [23:16]
— byte offset 3 refers to register bits [31:24].

Table 4-16 GICD_ITARGETSR bit assignments

Bits Namea Function

[31:24] CPU targets, byte offset 3 Processors in the system number from 0, and each bit in a CPU targets field refers to the
corresponding processor, see Table 4-17. For example, a value of 0x3 means that the Pending
interrupt is sent to processors 0 and 1.
For GICD_ITARGETSR0 to GICD_ITARGETSR7, a read of any CPU targets field returns
the number of the processor performing the read.

[23:16] CPU targets, byte offset 2

[15:8] CPU targets, byte offset 1

[7:0] CPU targets, byte offset 0

a. Each field holds the CPU targets list for a single interrupt. This section describes how the interrupt ID value determines the
GICD_ITARGETSR register number and the byte offset of the CPU targets field in that register.

Table 4-17 Meaning of CPU targets field bit values

CPU targets field value Interrupt targets

0bxxxxxxx1 CPU interface 0

0bxxxxxx1x CPU interface 1

0bxxxxx1xx CPU interface 2

0bxxxx1xxx CPU interface 3

0bxxx1xxxx CPU interface 4

0bxx1xxxxx CPU interface 5

0bx1xxxxxx CPU interface 6

0b1xxxxxxx CPU interface 7
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-107
ID072613 Non-Confidential

4 Programmers’ Model
4.3 Distributor register descriptions
The effect of changes to an GICD_ITARGETSR

Software can write to an GICD_ITARGETSR at any time. Any change to a CPU targets field value:

• Has no effect on any active interrupt. This means that removing a CPU interface from a targets list does not
cancel an active state for that interrupt on that CPU interface.

• Has an effect on any pending interrupts. This means:

— adding a CPU interface to the target list of a pending interrupt makes that interrupt pending on that
CPU interface

— removing a CPU interface from the target list of a pending interrupt removes the pending state of that
interrupt on that CPU interface.

Note
 There is a small but finite time required for any change to take effect.

• If it applies to an interrupt that is active and pending, does not change the interrupt targets until the active
status is cleared.
4-108 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.3 Distributor register descriptions
4.3.13 Interrupt Configuration Registers, GICD_ICFGRn

The GICD_ICFGR characteristics are:

Purpose The GICD_ICFGRs provide a 2-bit Int_config field for each interrupt supported by the GIC.
This field identifies whether the corresponding interrupt is edge-triggered or level-sensitive,
see Interrupt types on page 1-18.

Usage constraints For each supported PPI, it is IMPLEMENTATION DEFINED whether software can program the
corresponding Int_config field.

For SGIs, Int_config fields are read-only, meaning that GICD_ICFGR0 is read-only. For
PPIs, it is IMPLEMENTATION DEFINED whether the most significant bit of the Int_config field
is programmable. See Table 4-18 on page 4-110 for more information.

A register field corresponding to an unimplemented interrupt is RAZ/WI.

If the GIC implements the Security Extensions:

• a register field that corresponds to a Group 0 interrupt is RAZ/WI to Non-secure
accesses

• if the GIC implements configuration lockdown, the system can lock down the
Int_config fields for the lockable SPIs that are configured as Group 0, see
Configuration lockdown on page 4-82.

Before changing the value of a programmable Int_config field, software must disable the
corresponding interrupt, otherwise GIC behavior is UNPREDICTABLE.

Configurations These registers are available in all configurations of the GIC. If the GIC implements the
Security Extensions these registers are Common.

In a multiprocessor implementation, if bit[1] of the Int_config field for any PPI is
programmable then GICD_ICFGR1 is banked for each connected processor. This register
holds the Int_config fields for the PPIs, interrupts 16-31.

The number of implemented GICD_ICFGRs is (2*(GICD_TYPER.ITLinesNumber+1)).
The implemented GICD_ICFGRs number upwards from GICD_ICFGR0.

Attributes See the register summary in Table 4-1 on page 4-75.

Figure 4-15 shows the GICD_ICFGR bit assignments.

Figure 4-15 GICD_ICFGR bit assignments

Table 4-18 on page 4-110 shows the GICD_ICFGR bit assignments.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Field number, F

Int_config fields

See the bit assignment table for more information about the properties of each Int_config[1:0] field.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-109
ID072613 Non-Confidential

4 Programmers’ Model
4.3 Distributor register descriptions
In some implementations of this GIC architecture before the publication of the GICv1 Architecture Specification,
the model for handling each peripheral interrupt can be configured using bit [0] of the corresponding Int_config
field. Table 4-19 shows the encoding of Int_config[0] on these implementations.

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:
• the corresponding GICD_ICFGR number, n, is given by n = m DIV 16
• the offset of the required GICD_ICFGRn is (0xC00 + (4*n))
• the required Priority field in this register, F, is given by F = m MOD 16, where field 0 refers to register bits

[1:0], field 1 refers to bits [3:2], up to field 15 that refers to bits [31:30], see Figure 4-15 on page 4-109.

Table 4-18 GICD_ICFGR bit assignments

Bits Name Function

[2F+1:2F] Int_config, field F For Int_config[1], the most significant bit, bit [2F+1], the encoding is:
0 Corresponding interrupt is level-sensitive.
1 Corresponding interrupt is edge-triggered.
Int_config[0], the least significant bit, bit [2F], is reserved, but see Table 4-19 for the encoding of
this bit on some early implementations of this GIC architecture.
For SGIs:
Int_config[1] Not programmable, RAO/WI.
For PPIs and SPIs:
Int_config[1] For SPIs, this bit is programmable.a For PPIs it is IMPLEMENTATION DEFINED

whether this bit is programmable. A read of this bit always returns the correct value
to indicate whether the corresponding interrupt is level-sensitive or edge-triggered.

a. If the GIC implements the Security Extensions and the bit corresponds to a Group 0 interrupt, it is RAZ/WI to Non-secure accesses. This is
the usual behavior of bits that correspond to Group 0 interrupts.

Table 4-19 GICD_ICFGR Int_config[0] encoding in some early GIC implementations

Bits Name Function

[2F] Int_config[0], field F On a GIC where the handling mode of peripheral interrupts is configurable, the encoding of
Int_config[0] for PPIs and SPIs, is:
0 Corresponding interrupt is handled using the N-N model.
1 Corresponding interrupt is handled using the 1-N model.
4-110 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.3 Distributor register descriptions
4.3.14 Non-secure Access Control Registers, GICD_NSACRn

The GICD_NSACR characteristics are:

Purpose The GICD_NSACRs enable Secure software to permit Non-secure software on a particular
processor to create and manage Group 0 interrupts. They provide an access control for each
implemented interrupt.

Usage constraints These registers can be implemented only if the GIC implements the Security Extensions.

These registers are optional Secure registers. If not implemented, the corresponding address
space is reserved.

Configurations These registers are present, optionally, in GICv2. The corresponding address space is
reserved in GICv1.

The concept of selective enabling of Non-secure access to Group 0 interrupts applies to
SGIs and SPIs.

GICD_NSACR0 is a banked register, with a copy for every processor that has a CPU
interface and supports this feature.

Attributes See the register summary in Table 4-1 on page 4-75.

Figure 4-16 shows the GICD_NSACR bit assignments:

Figure 4-16 GICD_NSACR bit assignments

Table 4-20 shows the GICD_NSACR bit assignments:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Field number, F

NS_access fields

See the bit assignment table for more information about the properties of each NS_access[1:0] field.

Table 4-20 GICD_NSACR bit assignments

Bits Name Function

[2F+1:2F] NS_access, Field F If the corresponding interrupt does not support configurable Non-secure access, the field is
RAZ/WI. Otherwise, the field is RW and configures the level of Non-secure access permitted
when the interrupt is in Group 0. If the interrupt is in Group 1, this field is ignored. The possible
values of the field are:
0b00 No Non-secure access is permitted to fields associated with the corresponding

interrupt.
0b01 Non-secure write access is permitted to fields associated with the corresponding

interrupt in the GICD_ISPENDRn registers. A Non-secure write access to
GICD_SGIR is permitted to generate a Group 0 SGI for the corresponding
interrupt.

0b10 Adds Non-secure write access permission to fields associated with the
corresponding interrupt in the GICD_ICPENDRn registers. Also adds
Non-secure read access permission to fields associated with the corresponding
interrupt in the GICD_ISACTIVERn and GICD_ICACTIVERn registers.

0b11 Adds Non-secure read and write access permission to fields associated with the
corresponding interrupt in the GICD_ITARGETSRn registers.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-111
ID072613 Non-Confidential

4 Programmers’ Model
4.3 Distributor register descriptions
The GICD_NSACRn registers do not support PPI accesses, meaning that GICD_NSACR0 bits [31:16] are
RAZ/WI.

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:
• the corresponding GICD_NSACR number, n, is given by n = m DIV 16
• the offset of the required GICD_NSACRn is (0xE00 + (4*n)).

Note
 The address scheme used for a Remote access is system-defined.
4-112 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.3 Distributor register descriptions
4.3.15 Software Generated Interrupt Register, GICD_SGIR

The GICD_SGIR characteristics are:

Purpose Controls the generation of SGIs.

Usage constraints It is IMPLEMENTATION DEFINED whether the GICD_SGIR has any effect when the
forwarding of interrupts by Distributor is disabled by the GICD_CTLR settings.

Configurations This register is available in all configurations of the GIC. If the GIC implements the
Security Extensions this register is Common.

The NSATT field, bit [15], is implemented only if the GIC implements the Security
Extensions.

Attributes See the register summary in Table 4-1 on page 4-75.

Figure 4-17 shows the GICD_SGIR bit assignments.

Figure 4-17 GICD_SGIR bit assignments

Table 4-21 shows the GICD_SGIR bit assignments.

31 0

NSATTa

Reserved

16

SGIINTID

14

Reserved

152324 34

TargetListFilter

26 25

CPUTargetList

a Implemented only if the GIC implements the Security Extensions, reserved otherwise

Table 4-21 GICD_SGIR bit assignments

Bits Name Function

[31:26] - Reserved.

[25:24] TargetListFilter Determines how the distributor must process the requested SGI:
0b00 Forward the interrupt to the CPU interfaces specified in the CPUTargetList fielda.
0b01 Forward the interrupt to all CPU interfaces except that of the processor that requested the

interrupt.
0b10 Forward the interrupt only to the CPU interface of the processor that requested the

interrupt.
0b11 Reserved.

[23:16] CPUTargetList When TargetList Filter = 0b00, defines the CPU interfaces to which the Distributor must forward the
interrupt.
Each bit of CPUTargetList[7:0] refers to the corresponding CPU interface, for example
CPUTargetList[0] corresponds to CPU interface 0. Setting a bit to 1 indicates that the interrupt must be
forwarded to the corresponding interface.
If this field is 0x00 when TargetListFilter is 0b00, the Distributor does not forward the interrupt to any
CPU interface.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-113
ID072613 Non-Confidential

4 Programmers’ Model
4.3 Distributor register descriptions
SGI generation when the GIC implements the Security Extensions

If the GIC implements the Security Extensions, whether an SGI is forwarded to a processor specified in the write
to the GICD_SGIR depends on:
• whether the write to the GICD_SGIR is Group 0 (Secure) or Group 1 (Non-secure)
• for a Secure write to the GICD_SGIR, the value of the GICD_SGIR.NSATT bit
• whether the specified SGI is configured as Group 0 (Secure) or Group 1 (Non-secure) on the targeted

processor.

GICD_IGROUPR0 holds the security states of the SGIs, see the GICD_IGROUPRn description. In a
multiprocessor system, GICD_IGROUPR0 is banked for each connected processor, so the system configures the
security of each SGI independently for each processor. A single write to the GICD_SGIR can target more than one
processor. For each targeted processor, the Distributor determines whether to forward the SGI to the processor.

Table 4-22 shows the truth table for whether the Distributor forwards an SGI to a specified target CPU interface.

[15] NSATT Implemented only if the GIC includes the Security Extensions.
Specifies the required security value of the SGI:
0 Forward the SGI specified in the SGIINTID field to a specified CPU interface only if the

SGI is configured as Group 0 on that interface.
1 Forward the SGI specified in the SGIINTID field to a specified CPU interfaces only if

the SGI is configured as Group 1 on that interface.
This field is writable only by a Secure access. Any Non-secure write to the GICD_SGIR generates an
SGI only if the specified SGI is programmed as Group 1, regardless of the value of bit[15] of the write.
See SGI generation when the GIC implements the Security Extensions for more information.

Note
 If GIC does not implement the Security Extensions, this field is reserved.

[14:4] - Reserved, SBZ.

[3:0] SGIINTID The Interrupt ID of the SGI to forward to the specified CPU interfaces. The value of this field is the
Interrupt ID, in the range 0-15, for example a value of 0b0011 specifies Interrupt ID 3.

a. When TargetListFilter is 0b00, if the CPUTargetList field is 0x00 the Distributor does not forward the interrupt to any CPU interface.

Table 4-21 GICD_SGIR bit assignments (continued)

Bits Name Function

Table 4-22 Truth table for sending an SGI to a target processor

Status of GICD_SGIR write NSATT value SGI configuration for target processor Forward SGI?

Secure 0 Group 0 Yes

Group 1 No

1 Group 0 No

Group 1 Yes

Non-secure x Group 0 No

Group 1 Yes
4-114 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.3 Distributor register descriptions
4.3.16 SGI Clear-Pending Registers, GICD_CPENDSGIRn

The GICD_CPENDSGIR characteristics are:

Purpose The GICD_CPENDSGIRs provide a clear-pending bit for each supported SGI and source
processor combination. When a processor writes a 1 to a clear-pending bit, the pending state
of the corresponding SGI for the corresponding source processor is removed, and no longer
targets the processor performing the write. Writing a 0 has no effect. Reading a bit identifies
whether the SGI is pending, from the corresponding source processor, on the reading
processor.

These registers are used when preserving and restoring GIC state.

Note
 In these registers, and in the GICD_SPENDSGIRn registers, an SGI is identified by the

combination of SGI number and source processor.

Usage constraints A register bit corresponding to an unimplemented SGI is RAZ/WI.

These registers are byte-accessible.

If the GIC implements the Security Extensions:

• a register bit that corresponds to a Group 0 interrupt is RAZ/WI to Non-secure
accesses

• if the GIC supports fewer than eight processors, register bits corresponding to the
non-implemented processors are RAZ/WI.

Note
 • In a multiprocessor implementation, the processor accessing the register can change

the SGI pending status only on the corresponding interface. Changing the pending
status of an SGI for one target processor does not affect the status of that SGI on any
other processor.

• PPIs and SPIs both use the Interrupt Clear-Pending registers, GICD_ICPENDRn.

Configurations These registers are present only in GICv2. The register locations are reserved in GICv1.

Four SGI Clear-Pending registers are implemented. The registers contain a bit for each of
eight possible source processors, for each of the 16 possible SGIs. That is, each register
contains eight clear-pending bits for each of four SGIs.

In a multiprocessor implementation, the GICD_CPENDSGIRn registers are banked for
each connected processor.

Attributes See the register summary in Table 4-1 on page 4-75.

Figure 4-18 shows the GICD_CPENDSGIRn bit assignments.

Figure 4-18 GICD_CPENDSGIR bit assignments

SGI m clear-pending

31 07

SGI m+1 clear-pendingSGI m+2 clear-pendingSGI m+3 clear-pending

815162324
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-115
ID072613 Non-Confidential

4 Programmers’ Model
4.3 Distributor register descriptions
Table 4-23 shows the GICD_CPENDSGIR bit assignments.

For SGI ID x, generated by CPU C writing to its GICD_SGIR, when DIV and MOD are the integer division and
modulo operations:
• the corresponding GICD_CPENDSGIR register number, n, is given by n = x DIV 4
• the offset of the required GICD_CPENDSGIR is (0xF10 + (4*n));
• the SGI Clear-pending field offset, y, is given by y = x MOD 4
• the required bit in the SGI x Clear-pending field is bit C.

Table 4-23 GICD_CPENDSGIRn bit assignments

Bits Name Function

[8y+7:8y],
for y=0 to 3

SGI x
Clear-pending bits

For each bit:
Reads 0 SGI x from the corresponding processor is not pendinga.

1 SGI x from the corresponding processor is pendinga.
Writes 0 Has no effect.

1 Removes the pending state of SGI x for the corresponding processor.
See text for the relation between the SGI number, x, the GICD_CPENDSGIRn register number,
n, and the field number, y.

Note
 All accesses relate only to SGIs that target the processor making the access.

a. Pending interrupts include interrupts that are active and pending.
4-116 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.3 Distributor register descriptions
4.3.17 SGI Set-Pending Registers, GICD_SPENDSGIRn

The GICD_SPENDSGIR characteristics are:

Purpose The GICD_SPENDSGIRn registers provide a set-pending bit for each supported SGI and
source processor combination. When a processor writes a 1 to a set-pending bit, the pending
state is applied to the corresponding SGI for the corresponding source processor. Writing a
0 has no effect. Reading a bit identifies whether the SGI is pending, from the corresponding
source processor, on the reading processor.

These registers are used when preserving and restoring GIC state.

Note
 In these registers, and in the GICD_CPENDSGIRn registers, an SGI is identified by the

combination of SGI number and source processor.

Usage constraints A register bit corresponding to an unimplemented SGI is RAZ/WI.

These registers are byte-accessible.

If the GIC implements the Security Extensions:

• a register bit that corresponds to a Group 0 interrupt is RAZ/WI to Non-secure
accesses

• if the GIC supports fewer than eight processors, register bits corresponding to the
non-implemented processors are RAZ/WI.

Note
 • In a multiprocessor implementation, the processor accessing the register can change

the SGI pending status only on the corresponding interface. Changing the pending
status of an SGI for one target processor does not affect the status of that SGI on any
other processor.

• PPIs and SPIs both use the Interrupt Set-Pending registers, GICD_ISPENDRn.

Configurations These registers are present only in GICv2. The register locations are reserved in GICv1.

Four SGI Set-Pending registers are implemented. The registers contain a bit for each of
eight possible source processors, for each of the 16 possible SGIs. That is, each register
contains eight set-pending bits for each of four SGIs.

In a multiprocessor implementation, the GICD_SPENDSGIRn registers are banked for each
connected processor.

Attributes See the register summary in Table 4-1 on page 4-75.

Figure 4-19 shows the GICD_SPENDSGIRn bit assignments.

Figure 4-19 GICD_SPENDSGIR bit assignments

SGI m set-pending

31 07

SGI m+1 set-pendingSGI m+2 set-pendingSGI m+3 set-pending

815162324
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-117
ID072613 Non-Confidential

4 Programmers’ Model
4.3 Distributor register descriptions
Table 4-24 shows the GICD_SPENDSGIR bit assignments.

For SGI ID x, generated by CPU C writing to its GICD_SGIR, when DIV and MOD are the integer division and
modulo operations:
• the corresponding GICD_SPENDSGIR register number, n, is given by n = x DIV 4
• the offset of the required GICD_SPENDSGIR is (0xF20 + (4*n))
• the SGI Set-pending field offset, y, is given by y = x MOD 4
• the required bit in the SGI x Set-pending field is bit C.

Table 4-24 GICD_SPENDSGIRn bit assignments

Bits Name Function

[8y+7:8y],
for y=0 to 3

SGI x
Set-pending bits

For each bit:
Reads 0 SGI x for the corresponding processor is not pendinga.

1 SGI x for the corresponding processor is pendinga.
Writes 0 Has no effect.

1 Adds the pending state of SGI x for the corresponding processor,
if it is not already pending. If SGI x is already pending for the
corresponding processor then the write has no effect.

See text for the relation between the SGI number, x, the GICD_SPENDSGIRn register number,
n, and the field number, y.

Note
 All accesses relate only to SGIs that target the processor making the access.

a. Pending interrupts include interrupts that are active and pending.
4-118 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.3 Distributor register descriptions
4.3.18 Identification registers

This architecture specification defines offsets 0xFD0-0xFFC in the Distributor register map as a read-only
identification register space. Table 4-25 shows the architecturally-required implementation of the identification
register space.

The assignment of this register space, and naming of registers in this space, is consistent with the ARM
identification scheme for CoreLink and CoreSight components. ARM implementations of this GIC architecture
implement that identification scheme, and ARM strongly recommends that other implementers also use this scheme,
to provide a consistent software discovery model, see The ARM implementation of the GIC Identification Registers
on page 4-120.

Peripheral ID2 Register, ICPIDR2

The ICPIDR2 characteristics are:

Purpose Provides a four-bit architecturally-defined architecture revision field. The remaining bits of
the register are IMPLEMENTATION DEFINED.

Usage constraints There are no usage constraints. However, ARM strongly recommends that bits[31:8] of the
register are reserved, RAZ.

Configurations This register is available in all configurations of the GIC.

Attributes See the register summary in Table 4-25.

Figure 4-20 shows the ICPIDR2 bit assignments.

Figure 4-20 ICPIDR2 bit assignments

Table 4-25 The GIC identification register space

Offset Name Type Reseta

a. The reset value of an IMPLEMENTATION DEFINED register is IMPLEMENTATION DEFINED.

Description

0xFD0-0xFE4 - RO - IMPLEMENTATION DEFINED registers

0xFE8 ICPIDR2 RO -b

b. See the register description for information about the architecturally defined bits in this register.

Peripheral ID2 Register

0xFEC-0xFFC - RO - IMPLEMENTATION DEFINED registers

ArchRevIMPLEMENTATION DEFINED

31 8 7 4 3 0

IMPLEMENTATION DEFINED
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-119
ID072613 Non-Confidential

4 Programmers’ Model
4.3 Distributor register descriptions
Table 4-26 shows the ICPIDR2 bit assignments.

The ARM implementation of the GIC Identification Registers

Note
 • The ARM implementation of these registers is consistent with the identification scheme for CoreLink and

CoreSight components. This implementation identifies the device as a GIC that implements this architecture.
It does not identify the designer or manufacturer of the GIC implementation. For information about the
designer and manufacturer of a GIC implementation see the GICD_IIDR and GICC_IIDRdescriptions.

• In other contexts, this identification scheme identifies a component in a system. The GIC use of the scheme
is different. It identifies only that the device is an implementation of a version of the GIC architecture defined
by this specification. Software must read the GICD_IIDR and GICC_IIDR to discover, for example, the
implementer and version of the GIC hardware.

Table 4-27 shows the Identification Registers for an ARM implementation of the version of the GIC architecture
defined by this specification. ARM recommends other implementers to include the registers described here.

Table 4-26 ICPIDR2 bit assignments

Bits Name Function

[31:8] - IMPLEMENTATION DEFINED. The CoreLink and CoreSight Peripheral ID Registers scheme requires these
bits to be reserved, RAZ, and ARM strongly recommends that implementations follow this scheme.

[7:4] ArchRev Revision field for the GIC architecture. The value of this field depends on the GIC architecture version:
• 0x1 for GICv1
• 0x2 for GICv2.

[3:0] - IMPLEMENTATION DEFINED.

Table 4-27 Identification Registers for a GIC, with ARM implementation values

Registera Offset Bits
ARM implementation

Value Description

Component ID0, ICCIDR0 0xFF0 [7:0] 0x0D ARM-defined fixed values for the preamble
for component discovery.

Component ID1, ICCIDR1 0xFF4 [7:0] 0xF0

Component ID2, ICCIDR2 0xFF8 [7:0] 0x05

Component ID3, ICCIDR3 0xFFC [7:0] 0xB1

Peripheral ID0, ICPIDR0 0xFE0 [7:0] 0x90 Bits [7:0] of the ARM-defined DevID field.

Peripheral ID1, ICPIDR1 0xFE4 [7:4] 0xB Bits [3:0] of the ARM-defined ArchID field.

[3:0] Example values:
• 0x3 for ARM GICv1

implementations
• 0x4 for ARM GICv2

implementations.

Bits [11:8] of the ARM-defined DevID field:
4-120 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.3 Distributor register descriptions
Peripheral ID2, ICPIDR2 0xFE8 [7:4] Architecturally-defined:
• 0x1 for GICv1
• 0x2 for GICv2.

ArchRev field.

[3] 1 ARM-defined UsesJEPcode field.

[2:0] 0b011 Bits [6:4] of the ARM-defined ArchID field.

Peripheral ID3, ICPIDR3 0xFEC [3:0] 0x0 Reserved by ARM.

[7:4] 0x0 ARM-defined Revision field.

Peripheral ID4, ICPIDR4 0xFD0 [3:0] 0x4 ARM-defined ContinuationCode field.

[7:4] 0x0 Reserved by ARM.

Peripheral ID5, ICPIDR5 0xFD4 [7:0] 0x00 Reserved by ARM.

Table 4-27 Identification Registers for a GIC, with ARM implementation values (continued)

Registera Offset Bits
ARM implementation

Value Description
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-121
ID072613 Non-Confidential

4 Programmers’ Model
4.3 Distributor register descriptions
Note
 Some previous ARM implementations of the GIC did not implement Peripheral ID registers 4-7. Software can use
the value of bit [3] of the ICPIDR2 to identify these implementations:
0 Legacy format.
1 ARM GICv1 or later format.

The ARM peripheral ID for a GIC

Together, the Peripheral ID registers ICPIDR0 to ICPIDR7 define an 64-bit peripheral ID. In current ARM
implementations, bits [63:36] of that ID are reserved, RAZ. Figure 4-21 shows bits [35:0] of the Peripheral ID for
a GIC, and Table 4-28 shows all the fields in the 64-bit Peripheral ID.

Figure 4-21 ARM Peripheral ID fields for a GIC

Peripheral ID6, ICPIDR6 0xFD8 [7:0] 0x00 Reserved by ARM.

Peripheral ID7, ICPIDR7 0xFDC [7:0] 0x00 Reserved by ARM.

a. In the ARM implementation, bits [31:8] of each register are reserved. Bits [7:0] of the four Component ID registers together define a
conceptual 32-bit Component ID, and bits [7:0] of the eight Peripheral ID registers together define a conceptual 64-bit Peripheral ID.
In the GIC implementation, despite their names, Component ID and Peripheral ID refer only to the architecture of the implementation,
see the Note at the start of this section for more information.

Table 4-27 Identification Registers for a GIC, with ARM implementation values (continued)

Registera Offset Bits
ARM implementation

Value Description

Table 4-28 Fields in the GIC Peripheral ID, for an ARM implementation

Name Bits Source Function, ARM-defined fields

- [39:36] ICPIDR4[7:4] Reserved

ContinuationCode [35:32] ICPIDR4[3:0] JEP106 continuation code for ARM

Revision [31:28] ICPIDR3[7:4] Revision field

- [27:24] ICPIDR3[3:0] Reserved

ArchRev [23:20] ICPIDR2[7:4] Architecturally-defined revision number for the ARM GIC
architecture, see Peripheral ID2 Register, ICPIDR2 on page 4-119

00 0 0 0 0 0 001 0 0 0

23
4 3 2 0 7 4 3 0 7

0

0 0 0 1 1 0 1 1 1 0 1 1 0 0 1 1 1 0 0 1 0 0 0

ICPIDR0[7:0]ICPIDR1[7:0]ICPIDR2[7:0]

DevIDArchIDArchRev
UsesJEPcode

20 19 18 16 15 12 11 8 7
07

ICPIDR3[7:0]ICPIDR4[3:0]

4 3 073 0

ReservedRevision
ContinuationCode

31 28 27 2435 32
4-122 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.3 Distributor register descriptions
UsesJEPcode [19] ICPIDR2[3] Indicate that the identifier string uses JEP106 codes to identify ARM
as the designer of the architecture

ArchID [18:12] ICPIDR2[2:0],
ICPIDR1[7:4]

Identifies ARM as the designer of the GIC architecture

DevID [11:0] ICPIDR1[3:0],
ICPIDR0[7:0]

Identifies the device as a particular GIC implementation

Table 4-28 Fields in the GIC Peripheral ID, for an ARM implementation (continued)

Name Bits Source Function, ARM-defined fields
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-123
ID072613 Non-Confidential

4 Programmers’ Model
4.4 CPU interface register descriptions
4.4 CPU interface register descriptions
The following sections describe the CPU interface registers:
• CPU Interface Control Register, GICC_CTLR on page 4-125
• Interrupt Priority Mask Register, GICC_PMR on page 4-131
• Binary Point Register, GICC_BPR on page 4-133
• Interrupt Acknowledge Register, GICC_IAR on page 4-135
• End of Interrupt Register, GICC_EOIR on page 4-138
• Running Priority Register, GICC_RPR on page 4-142
• Highest Priority Pending Interrupt Register, GICC_HPPIR on page 4-143
• Aliased Binary Point Register, GICC_ABPR on page 4-145
• Aliased Interrupt Acknowledge Register, GICC_AIAR on page 4-146
• Aliased End of Interrupt Register, GICC_AEOIR on page 4-147
• Aliased Highest Priority Pending Interrupt Register, GICC_AHPPIR on page 4-148
• Active Priorities Registers, GICC_APRn on page 4-149
• Non-secure Active Priorities Registers, GICC_NSAPRn on page 4-151
• CPU Interface Identification Register, GICC_IIDR on page 4-152
• Deactivate Interrupt Register, GICC_DIR on page 4-153.

See CPU interface register map on page 4-76 for address offset and reset information for these registers.
4-124 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.4 CPU interface register descriptions
4.4.1 CPU Interface Control Register, GICC_CTLR

The GICC_CTLR characteristics are:

Purpose Enables the signaling of interrupts by the CPU interface to the connected processor, and
provides additional top-level control of the CPU interface. In a GICv2 implementation, this
includes control of the end of interrupt (EOI) behavior.

Note
 In a GICv2 implementation that includes the GIC Security Extensions, independent EOI

controls are provided for:

• Accesses from Secure state. This control applies to the handling of both Group 0 and
Group 1 interrupts.

• Accesses from Non-secure state. This control only applies to the handling of Group 1
interrupts.

The EOI controls affect the behavior of accesses to GICC_EOIR and GICC_DIR. See the
register descriptions for more information.

Usage constraints If the GIC implements the Security Extensions with support for configuration lockdown, the
system can prevent write access to certain register fields in the Secure GICC_CTLR, see
Configuration lockdown on page 4-82.

Configurations If the implementation supports interrupt grouping, this register provides independent
control of Group 0 and Group 1 interrupts.

If the GIC implements the Security Extensions:

• this register is banked to provide Secure and Non-secure copies, see Register banking
on page 4-77

• the register bit assignments are different in the Secure and Non-secure copies of the
register, and:

— the Secure copy of the register can control both Group 0 and Group 1
interrupts

— the Non-secure copy of the register can control only Group 1 interrupts.

Attributes See the register summary in Table 4-2 on page 4-76.

Figure 4-22 on page 4-126 and Table 4-29 on page 4-126 shows the GICC_CTLR bit assignments for a GICv1
implementation, for
• an implementation that does not include the Security Extensions
• the Non-secure copy of the register, in an implementation that includes the Security Extensions.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-125
ID072613 Non-Confidential

4 Programmers’ Model
4.4 CPU interface register descriptions
Figure 4-22 GICC_CTLR bit assignments, GICv1 without Security Extensions or Non-secure

Figure 4-23 and Table 4-30 show the GICC_CTLR bit assignments for the Non-secure copy of the register in a GIC
v2 implementation that includes the Security Extensions,

Figure 4-23 GICC_CTLR bit assignments, GICv2 with Security Extensions, Non-secure copy

Table 4-29 GICC_CTLR bit assignments, GIC1 without Security Extensions or Non-secure

Bits Name Function

[31:1] - Reserved

[0] Enable Enable for the signaling of Group 1 interrupts by the CPU interface to the connected processor.
0 Disable signaling of interrupts
1 Enable signaling of interrupts.

Note
 • When this bit is cleared to 0, the CPU interface ignores any pending interrupt forwarded to

it. When this bit is set to 1, the CPU interface starts to process pending interrupts that are
forwarded to it. There is a small but finite time required for a change to take effect.

• On a GICv1 implementation that does not include the Security Extensions, this bit controls
the signaling of all interrupts by the CPU interface to the connected processor.

See Enabling and disabling the Distributor and CPU interfaces on page 4-77 for more
information about this bit.

31 1 0

Reserved

Enable

31 1 0

Reserved Reserved

EnableGrp1

4

IRQBypDisGrp1
FIQBypDisGrp1

Reserved
EOImodeNS

5678910

Table 4-30 GICC_CTLR bit assignments, GIC2 with Security Extensions, Non-secure copy

Bits Name Function

[31:10] - Reserved

[9] EOImodeNS Controls the behavior of Non-secure accesses to the GICC_EOIR and GICC_DIR registers:
0 GICC_EOIR has both priority drop and deactivate interrupt functionality.

Accesses to the GICC_DIR are UNPREDICTABLE.
1 GICC_EOIR has priority drop functionality only. The GICC_DIR register has

deactivate interrupt functionality.
See Behavior of writes to GICC_EOIR, GICv2 on page 4-140 for more information.

[8:7] - Reserved.
4-126 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.4 CPU interface register descriptions
Figure 4-24 on page 4-128 and Table 4-31 on page 4-128 show the GICC_CTLR bit assignments for:
• a GICv2 implementation, for:

— an implementation that does not include the Security Extensions
— the Secure copy of the register, in an implementation that includes the Security Extensions

• a GICv1 implementation that includes the Security Extensions, for the Secure copy of the register.

[6] IRQBypDisGrp1 When the signaling of IRQs by the CPU interface is disabled, this bit partly controls whether the
bypass IRQ signal is signaled to the processor:
0 Bypass IRQ signal is signaled to the processor
1 Bypass IRQ signal is not signaled to the processor.
See Interrupt signal bypass, and GICv2 bypass disable on page 2-27 for more information.

[5] FIQBypDisGrp1 When the signaling of FIQs by the CPU interface is disabled, this bit partly controls whether the
bypass FIQ signal is signaled to the processor:
0 Bypass FIQ signal is signaled to the processor
1 Bypass FIQ signal is not signaled to the processor.
See Interrupt signal bypass, and GICv2 bypass disable on page 2-27 for more information.

[4:1] - Reserved

[0] EnableGrp1 Enable for the signaling of Group 1 interrupts by the CPU interface to the connected processor.
0 Disable signaling of interrupts
1 Enable signaling of interrupts.

Note
 When this bit is set to 0, the CPU interface ignores any pending Group 1 interrupt forwarded to
it. When this bit is set to 1, the CPU interface starts to process pending Group 1 interrupts that are
forwarded to it. There is a small but finite time required for a change to take effect.

See Enabling and disabling the Distributor and CPU interfaces on page 4-77 for more
information about this bit.

Table 4-30 GICC_CTLR bit assignments, GIC2 with Security Extensions, Non-secure copy (continued)

Bits Name Function
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-127
ID072613 Non-Confidential

4 Programmers’ Model
4.4 CPU interface register descriptions
Figure 4-24 GICC_CTLR bit assignments, GICv2 without Security Extensions or Secure

Table 4-31 GICC_CTLR bit assignments, GICv2 without Security Extensions or Secure

Bit Name Function

[31:11] - Reserved.

[10] EOImodeNSab Alias of EOImodeNS from the Non-secure copy of this register, see Table 4-30 on page 4-126.
In a GICv2 implementation that does not include the Security Extensions, and in a GICv1
implementation, this bit is reserved.

[9] EOImodeSa Controls the behavior of accesses to GICC_EOIR and GICC_DIR registers. In a GIC implementation
that includes the Security Extensions, this control applies only to Secure accesses, and the EOImodeNS
bit controls the behavior of Non-secure accesses to these registers:
0 GICC_EOIR has both priority drop and deactivate interrupt functionality. Accesses to

the GICC_DIR are UNPREDICTABLE.
1 GICC_EOIR has priority drop functionality only. GICC_DIR has deactivate interrupt

functionality.
See Behavior of writes to GICC_EOIR, GICv2 on page 4-140 for more information.

Note
 This bit is called EOImode in a GIC implementation that does not include the Security Extensions.

In a GICv1 implementation, this bit is reserved.

[8] IRQBypDisGrp1a Alias of IRQBypDisGrp1 from the Non-secure copy of this register, see Table 4-30 on page 4-126.
In a GICv1 implementation, this bit is reserved.

[7] FIQBypDisGrp1a Alias of FIQBypDisGrp1 from the Non-secure copy of this register, see Table 4-30 on page 4-126.
In a GICv1 implementation, this bit is reserved.

31 1 0

Reserved

EnableGrp0

4

IRQBypDisGrp1a

FIQBypDisGrp1a

EOImodeSac
EOImodeNSab

5678910

EnableGrp1
AckCtl
FIQEn
CBPR

3 211

IRQBypDisGrp0a

FIQBypDisGrp0a

a GICv2 only
b When the GIC implementation includes the Security Extensions
c EOImode in a GIC implementation that does not include the Security Extensions
4-128 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.4 CPU interface register descriptions
[6] IRQBypDisGrp0a When the signaling of IRQs by the CPU interface is disabled, this bit partly controls whether the bypass
IRQ signal is signaled to the processor:
0 Bypass IRQ signal is signaled to the processor
1 Bypass IRQ signal is not signaled to the processor.
See Interrupt signal bypass, and GICv2 bypass disable on page 2-27 and Power management, GIC v2
on page 2-31 for more information.
In a GICv1 implementation, this bit is reserved.

[5] FIQBypDisGrp0a When the signaling of FIQs by the CPU interface is disabled, this bit partly controls whether the bypass
FIQ signal is signaled to the processor:
0 Bypass FIQ signal is signaled to the processor
1 Bypass FIQ signal is not signaled to the processor.
See Interrupt signal bypass, and GICv2 bypass disable on page 2-27 and Power management, GIC v2
on page 2-31 for more information.
In a GICv1 implementation, this bit is reserved.

[4] CBPRc Controls whether the GICC_BPR provides common control to Group 0 and Group 1 interrupts.
0 To determine any preemption, use:

• the GICC_BPR for Group 0 interrupts
• the GICC_ABPR for Group 1 interrupts.

1 To determine any preemption use the GICC_BPR for both Group 0 and Group 1
interrupts.

See The effect of interrupt grouping on priority grouping on page 3-57 for more information about how
GICC_CTLR.CBPR affects accesses to GICC_BPR and GICC_ABPR.

[3] FIQEn Controls whether the CPU interface signals Group 0 interrupts to a target processor using the FIQ or
the IRQ signal.
0 Signal Group 0 interrupts using the IRQ signal.
1 Signal Group 0 interrupts using the FIQ signal.
The GIC always signals Group 1 interrupts using the IRQ signal.

Note
 If using software written for a system that includes an implementation of GICv1 without the Security
Extensions, all interrupts are signaled by the IRQ signal. In such systems, ensure that this bit is 0. This
is the default value. See Example GIC usage models on page 3-68 for more information.

Table 4-31 GICC_CTLR bit assignments, GICv2 without Security Extensions or Secure (continued)

Bit Name Function
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-129
ID072613 Non-Confidential

4 Programmers’ Model
4.4 CPU interface register descriptions
For more information about the optional support for interrupt signal bypass, including the GICv2 disable controls
of this functionality, see Interrupt signal bypass, and GICv2 bypass disable on page 2-27.

[2] AckCtl When the highest priority pending interrupt is a Group 1 interrupt, determines both:
• whether a read of GICC_IAR acknowledges the interrupt, or returns a spurious interrupt ID
• whether a read of GICC_HPPIR returns the ID of the highest priority pending interrupt, or

returns a spurious interrupt ID.
0 If the highest priority pending interrupt is a Group 1 interrupt, a read of the GICC_IAR

or the GICC_HPPIR returns an Interrupt ID of 1022. A read of the GICC_IAR does
not acknowledge the interrupt, and has no effect on the pending status of the interrupt.

1 If the highest priority pending interrupt is a Group 1 interrupt, a read of the GICC_IAR
or the GICC_HPPIR returns the Interrupt ID of the Group 1 interrupt. A read of
GICC_IAR acknowledges and Activates the interrupt.

In a GIC implementation that includes the Security Extensions, this control affects only the behavior
of Secure register accesses.
For more information, see:
• The effect of interrupt grouping on interrupt acknowledgement on page 3-50
• Interrupt grouping and interrupt prioritization on page 3-53
• Behavior of writes to GICC_EOIR, GICv1 with Security Extensions on page 4-139
• Effect of interrupt grouping and the Security Extensions on reads of the GICC_HPPIR on

page 4-143.

Note
 ARM deprecates use of GICC_CTLR.AckCtl, and strongly recommends using a software model where
GICC_CTLR.AckCtl is set to 0. See Enabling and disabling the Distributor and CPU interfaces on
page 4-77 for more information about the effects of setting this bit.

[1] EnableGrp1d, e Enable for the signaling of Group 1 interrupts by the CPU interface to the connected processor:
0 Disable signaling of Group 1 interrupts.
1 Enable signaling of Group 1 interrupts.

[0] EnableGrp0e, f Enable for the signaling of Group 0 interrupts by the CPU interface to the connected processor:
0 Disable signaling of Group 0 interrupts.
1 Enable signaling of Group 0 interrupts.

a. GICv2 only, see Power management, GIC v2 on page 2-31 for more information.
b. When the GIC implements the Security Extensions.
c. SBPR in GICv1.
d. EnableNS in GICv1.
e. There is a small but finite time required for a change in the value of this register to take effect.
f. EnableS in GICv1.

Table 4-31 GICC_CTLR bit assignments, GICv2 without Security Extensions or Secure (continued)

Bit Name Function
4-130 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.4 CPU interface register descriptions
4.4.2 Interrupt Priority Mask Register, GICC_PMR

The GICC_PMR characteristics are:

Purpose Provides an interrupt priority filter. Only interrupts with higher priority than the value in this
register are signaled to the processor.

Note
 Higher priority corresponds to a lower Priority field value.

Usage constraints If the GIC implements the Security Extensions then:

• a Non-secure access to this register can only read or write a value that corresponds to
the lower half of the priority range, see Interrupt grouping and interrupt
prioritization on page 3-53.

• if a Secure write has programmed the GICC_PMR with a value that corresponds to a
value in the upper half of the priority range then:

— any Non-secure read of the GICC_PMR returns 0x00, regardless of the value
held in the register

— any Non-secure write to the GICC_PMR is ignored.

For more information see Non-secure access to register fields for Group 0 interrupt
priorities on page 4-81.

When determining interrupt preemption, the priority value can be split into two parts, using
the Binary Point register, GICC_BPR.

Configurations This register is available in all configurations of the GIC. If the GIC implements the
Security Extensions, this register is Common.

Attributes See the register summary in Table 4-2 on page 4-76.

Figure 4-25 shows the GICC_PMR bit assignments.

Figure 4-25 GICC_PMR bit assignments

Table 4-32 shows the GICC_PMR Register bit assignments.

The following pseudocode shows the effects of the GIC Security Extensions on accesses to this register:

31 7 08

PriorityReserved

Table 4-32 GICC_PMR Register bit assignments

Bits Name Function

[31:8] - Reserved.

[7:0] Priority The priority mask level for the CPU interface. If the priority of an interrupt is higher than the
value indicated by this field, the interface signals the interrupt to the processor.
If the GIC supports fewer than 256 priority levels then some bits are RAZ/WI, as follows:
128 supported levels Bit [0] = 0.
64 supported levels Bit [1:0] = 0b00.
32 supported levels Bit [2:0] = 0b000.
16 supported levels Bit [3:0] = 0b0000.
For more information see Interrupt prioritization on page 3-44.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-131
ID072613 Non-Confidential

4 Programmers’ Model
4.4 CPU interface register descriptions
// MaskRegRead()
// =============

bits(8) MaskRegRead()

 read_value = GICC_PMR<7:0>;
 if NS_access then // A non-secure GIC access.
 if read_value<7> == '0' then
 read_value = '00000000'; // A secure priority value, RAZ
 else
 read_value = LSL((read_value AND P_MASK), 1);
 return(read_value);

// MaskRegWrite()
// ==============

MaskRegWrite(bits(8) value)

 if NS_access then // A non-secure GIC access.
 mod_write_val = (‘10000000’ OR LSR(value,1)) AND P_MASK;
 if GICC_PMR<7> == '1' then // Non-secure execution can only update the
 GICC_PMR[cpu_id]<7:0> = mod_write_val; // Priority Mask Register if the current
 // value is in the range 0x80 to 0xFF
 else
 IgnoreWriteRequest();
 else // A secure GIC access
 GICC_PMR<7:0> = value AND P_MASK;
4-132 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.4 CPU interface register descriptions
4.4.3 Binary Point Register, GICC_BPR

The GICC_BPR characteristics are:

Purpose The register defines the point at which the priority value fields split into two parts, the group
priority field and the subpriority field. The group priority field is used to determine interrupt
preemption. For more information see Preemption on page 3-45 and Priority grouping on
page 3-45.

Usage constraints The minimum binary point value is IMPLEMENTATION DEFINED in the range:

• 0-3 if the implementation does not include the GIC Security Extensions, and for the
Secure copy of the register if the implementation includes the Security Extensions

• 1-4 for the Non-secure copy of the register.

An attempt to program the binary point field to a value less than the minimum value sets the
field to the minimum value. On a reset, the binary point field is set to the minimum
supported value.

Configurations This register is available in all configurations of the GIC. If the GIC implements the
Security Extensions:

• this register is banked to provide Secure and Non-secure copies, see Register banking
on page 4-77

• the GICC_ABPR is an alias of the Non-secure copy of GICC_BPR

• the GICC_CTLR.CBPR bit affects the view of the Non-secure GICC_BPR.

In any GICv2 implementation, or in a GICv1 implementation that includes the Security
Extensions, GICC_CTLR.CBPR controls whether the Secure copy of the GICC_BPR, or
the GICC_ABPR, is used for the preemption of Group 1 interrupts.

See Priority grouping on page 3-45 and The effect of interrupt grouping on priority
grouping on page 3-57 for more information.

Attributes See the register summary in Table 4-2 on page 4-76.

Figure 4-26 shows the GICC_BPR bit assignments.

Figure 4-26 GICC_BPR bit assignments

Table 4-33 shows the GICC_BPR bit assignments.

31 2 0

Reserved

3

Binary
point

Table 4-33 GICC_BPR bit assignments

Bits Name Function

[31:3] - Reserved.

[2:0] Binary point The value of this field controls how the 8-bit interrupt priority field is split into a group
priority field, used to determine interrupt preemption, and a subpriority field. For how this
field determines the interrupt priority bits assigned to the group priority field see:
• Table 3-7 on page 3-57, for the processing of Group 1 interrupts on a GIC that

supports interrupt grouping, when the GICC_CTLR.CBPR bit is set to 1
• Table 3-2 on page 3-46, for all other cases.
See Priority grouping on page 3-45 for more information.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-133
ID072613 Non-Confidential

4 Programmers’ Model
4.4 CPU interface register descriptions
Note
 Aliasing the Non-secure GICC_BPR as the GICC_ABPR means that, in a multiprocessor system, a processor that
can make only Secure accesses to the GIC can access the GICC_ABPR, to configure the preemption setting for
Group 1 interrupts.

The following pseudocode shows the effects of the GIC Security Extensions on accesses to this register:

// BinaryPointRegWrite()
// =====================

BinaryPointRegWrite(bits(3) value)

 if NS_access && GICC_CTLR.CBPR == '1' then
 IgnoreWriteRequest();
 else
 GICC_BPR<2:0> = value; // Banked register

bits(3) BinaryPointRegRead()

 read_value = GICC_BPR<2:0>; // Banked register
 if NS_access && GICC_CTLR.CBPR == '1' then
 read_value = GICC_BPR_Secure; // The secure copy of the BPR
 if read_value != 7 then
 read_value = read_value + 1;
 return(read_value);
4-134 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.4 CPU interface register descriptions
4.4.4 Interrupt Acknowledge Register, GICC_IAR

The GICC_IAR characteristics are:

Purpose The processor reads this register to obtain the interrupt ID of the signaled interrupt. This
read acts as an acknowledge for the interrupt.

Usage constraints When GICC_CTLR.AckCtl is set to 0 in a GICv2 implementation that does not include the
Security Extensions, if the highest priority pending interrupt is in Group 1, the interrupt ID
1022 is returned.

Configurations This register is available in all configurations of the GIC. If the GIC implements the
Security Extensions:
• this register is Common.
• the GICC_AIAR is an alias of the Non-secure view of this register.

Attributes See the register summary in Table 4-2 on page 4-76.

Figure 4-27 shows the IAR bit assignments.

Figure 4-27 GICC_IAR bit assignments

Table 4-34 shows the IAR bit assignments.

A read of the GICC_IAR returns the interrupt ID of the highest priority pending interrupt for the CPU interface. The
read returns a spurious interrupt ID of 1023 if any of the following apply:
• forwarding of interrupts by the Distributor to the CPU interface is disabled
• signaling of interrupts by the CPU interface to the connected processor is disabled
• no pending interrupt on the CPU interface has sufficient priority for the interface to signal it to the processor.

Note
 The following sequence of events is an example of when the GIC returns an interrupt ID of 1023, and shows how
reads of the GICC_IAR can be timing critical:

1. A peripheral asserts a level-sensitive interrupt.

2. The interrupt has sufficient priority and therefore the GIC signals it to a targeted processor.

3. The peripheral deasserts the interrupt. Because there is no other pending interrupt of sufficient priority, the
GIC deasserts the interrupt request to the processor.

31 9 0

Reserved

10

Interrupt ID

1213

CPUID

Table 4-34 GICC_IAR bit assignments

Bit Name Function

[31:13] - Reserved.

[12:10] CPUID For SGIs in a multiprocessor implementation, this field identifies the processor that
requested the interrupt. It returns the number of the CPU interface that made the
request, for example a value of 3 means the request was generated by a write to the
GICD_SGIR on CPU interface 3.
For all other interrupts this field is RAZ.

[9:0] Interrupt ID The interrupt ID.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-135
ID072613 Non-Confidential

4 Programmers’ Model
4.4 CPU interface register descriptions
4. Before it has recognized the deassertion of the interrupt request from stage 3, the targeted processor reads the
GICC_IAR. Because there is no interrupt with sufficient priority to signal to the processor, the GIC returns
the spurious ID value of 1023.

The determination of the returned interrupt ID is more complex if the GIC supports interrupt grouping, see Effect
of interrupt grouping on reads of the GICC_IAR.

A non-spurious interrupt ID returned by a read of the GICC_IAR is called a valid interrupt ID.

When the GIC returns a valid interrupt ID to a read of the GICC_IAR it treats the read as an acknowledge of that
interrupt and, as a side-effect of the read, changes the interrupt status from pending to active, or to active and
pending if the pending state of the interrupt persists. Normally, the pending state of an interrupt persists only if the
interrupt is level-sensitive and remains asserted.

For every read of a valid Interrupt ID from the GICC_IAR, the connected processor must perform a matching write
to the GICC_EOIR.

Note
 • For compatibility with possible extensions to the GIC architecture specification, ARM recommends that

software preserves the entire register value read from the GICC_IAR, and writes that value back to the
GICC_EOIR when it has completed its processing of the interrupt.

• Although multiple target processors might attempt to read the GICC_IAR at any time, in GICv2 only one
processor can obtain a valid interrupt ID, see Implications of the 1-N model on page 3-41 for more
information.

Effect of interrupt grouping on reads of the GICC_IAR

Note
 This section does not apply to GICV_IAR, the corresponding register in the virtual CPU interface.

When a GIC implementation supports interrupt grouping, whether a read of the GICC_IAR returns a valid interrupt
ID depends on:

• whether there is a pending interrupt of sufficient priority for it to be signaled to the processor, and if so,
whether:
— the highest priority pending interrupt is a Group 0 or a Group 1 interrupt
— interrupt signaling is enabled for that interrupt group.

• if the GIC implements the Security Extensions, whether the GICC_IAR read access is Secure or Non-secure

• the value of the GICC_CTLR.AckCtl bit.

Reads of the GICC_IAR that do not return a valid interrupt ID returns a spurious interrupt ID, ID 1022 or 1023, see
Special interrupt numbers when a GIC supports interrupt grouping on page 3-50. Table 4-35 shows all possible
GICC_IAR reads for a GIC that supports interrupt grouping on a CPU interface that implements the Security
Extensions. For a GICv2 CPU interface that does not implement the Security Extensions, all entries except those
for Non-secure GICC_IAR reads apply.

Table 4-35 Effect of interrupt grouping and the Security Extensions on reads of GICC_IAR

State GICC_IAR read GICC_CTLR.AckCtl Returned interrupt ID

Highest priority pending interrupta is Group 1 Non-secure x ID of Group 1 interrupt

Secure 1 ID of Group 1 interrupt

0 Interrupt ID 1022
4-136 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.4 CPU interface register descriptions
The following pseudocode shows the effects of the GIC Security Extensions on accesses to this register:

// ReadGICC_IAR()
// ==============
//
// Value of GICC_IAR read by a CPU access
//

bits(32) ReadGICC_IAR(integer cpu_id)

 pendID = HighestPriorityPendingInterrupt(cpu_id);

 if (IsGrp0Int(pendID) && (GICD_CTLR.EnableGrp0 == '0' || GICC_CTLR.EnableGrp0 == '0')) ||
 (!IsGrp0Int(pendID) && (GICD_CTLR.EnableGrp1 == '0' || GICC_CTLR.EnableGrp1 == '0'))
 then
 pendID = 1023; // If the highest priority isn't enabled, then no interrupt

 if pendID != 1023 then // An enabled interrupt is pending
 if IsGrp0Int(pendID) then // Highest priority is Group 0
 if NS_access then
 pendID = 1023;
 else // Highest priority is Group 1
 if !NS_access && (GICC_CTLR[cpu_id].AckCtl == '0') then
 pendID = 1022;

 cpuID = 0; // Must be zero for non-SGI interrupts

 if pendID < 16 then // 0 .. 15 are Software Generated Interrupts
 sgiID = SGI_CpuID(pendID); // value is IMPLEMENTATION DEFINED

 if pendID < 1020 then // Check that it is not a spurious interrupt
 AcknowledgeInterrupt(pendID); // Set active and attempt to clear pending

 rval = 0;
 rval<12:10> = sgiID;
 rval<9:0> = pendID;

 return(rval);

Highest priority pending interrupta is Group 0 Non-secure x Interrupt ID 1023

Secure x ID of Group 0 interrupt

No pending interruptsa x x Interrupt ID 1023

Interrupt signaling of the required interrupt group
by CPU interface disabled

x x Interrupt ID 1023

a. Of sufficient priority to be signaled to the processor if signaling by the CPU interface is enabled.

Table 4-35 Effect of interrupt grouping and the Security Extensions on reads of GICC_IAR (continued)

State GICC_IAR read GICC_CTLR.AckCtl Returned interrupt ID
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-137
ID072613 Non-Confidential

4 Programmers’ Model
4.4 CPU interface register descriptions
4.4.5 End of Interrupt Register, GICC_EOIR

The GICC_EOIR characteristics are:

Purpose A processor writes to this register to inform the CPU interface either:

• that it has completed the processing of the specified interrupt

• in a GICv2 implementation, when the appropriate GICC_CTLR.EOImode bit is set
to 1, to indicate that the interface should perform priority drop for the specified
interrupt.

See Priority drop and interrupt deactivation on page 3-38 for more information.

Usage constraints A write to this register must correspond to the most recent valid read from an Interrupt
Acknowledge Register. A valid read is a read that returns a valid interrupt ID, that is not a
spurious interrupt ID.

Configurations This register is available in all configurations of the GIC. If the GIC implements the
Security Extensions this register is Common.

Attributes See Table 4-2 on page 4-76.

Figure 4-28 shows the GICC_EOIR bit assignments.

Figure 4-28 GICC_EOIR bit assignments

Table 4-36 shows the GICC_EOIR bit assignments.

See Priority drop and interrupt deactivation on page 3-38 for more information about the effect of a write to this
register.

For every read of a valid Interrupt ID from the GICC_IAR, the connected processor must perform a matching write
to the GICC_EOIR. The value written to the GICC_EOIR must be the interrupt ID read from the GICC_IAR.

If a read of the GICC_IAR returns the ID of a spurious interrupt, software does not have to make a corresponding
write to the GICC_EOIR. If software writes the ID of a spurious interrupt to the GICC_EOIR, the GIC ignores that
write.

Note
 For compatibility with possible extensions to the GIC architecture specification, ARM recommends that software
preserves the entire register value read from the GICC_IAR when it acknowledges the interrupt, and uses that entire
value for its corresponding write to the GICC_EOIR.

31 9 0

Reserved

10

EOIINTID

1213

CPUID

Table 4-36 GICC_EOIR bit assignments

Bits Name Function

[31:13] - Reserved.

[12:10] CPUID On a multiprocessor implementation, if the write refers to an SGI, this field contains
the CPUID value from the corresponding GICC_IAR access.
In all other cases this field SBZ.

[9:0] EOIINTID The Interrupt ID value from the corresponding GICC_IAR access.
4-138 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.4 CPU interface register descriptions
For nested interrupts, the order of writes to GICC_EOIR must be the reverse of the order of interrupt
acknowledgement. Behavior is UNPREDICTABLE if either:
• the ordering constraints on reads from the GICC_IAR and writes to the GICC_EOIR are not maintained
• the value in a write to the GICC_EOIR does not match an active interrupt, or the ID of a spurious interrupt.

The effect of writing to GICC_EOIR with a valid interrupt ID is UNPREDICTABLE if any of the following apply:
• the value written does not match the last valid interrupt value read from the Interrupt Acknowledge register
• there is no outstanding acknowledged interrupt
• the indicated interrupt has already been subject to an EOI request.

For any implementation other than a GICv1 implementation without the GIC Security Extensions, see one of the
following sections for more information:
• Behavior of writes to GICC_EOIR, GICv1 with Security Extensions.
• Behavior of writes to GICC_EOIR, GICv2 on page 4-140.

Behavior of writes to GICC_EOIR, GICv1 with Security Extensions

If a CPU interface on a GICv1 implementation implements the GIC Security Extensions, whether a write to the
GICC_EOIR removes the active status of the identified interrupt depends on:
• whether the identified interrupt is Group 0 or Group 1
• whether the GICC_EOIR write is Secure or Non-secure
• the value of the GICC_CTLR.AckCtl bit.

Table 4-37 shows all possible results of a write to the GICC_EOIR.

When GICC_CTLR.AckCtl == 0, the ordering requirement for GICC_EOIR writes relative to GICC_IAR reads
applies independently for Secure and Non-secure register accesses. This means:
• a Secure write to GICC_EOIR must correspond to the most recent Secure read of GICC_IAR
• a Non-secure write to GICC_EOIR must correspond to the most recent Non-secure read of GICC_IAR
• a Secure write to the GICC_AEOIR must correspond to the most recent Secure read of the GICC_AIAR.

When GICC_CTLR.AckCtl == 1, the ordering requirement for Secure GICC_EOIR writes relative to GICC_IAR
reads takes no account of the security level of the GICC_IAR accesses. This means that a Secure write to
GICC_EOIR must correspond to the most recent read of GICC_IAR, regardless of the security level of that read of
GICC_IAR.

Note
 The value of GICC_CTLR.AckCtl has no effect on the behavior of Non-secure register accesses. Any Non-secure
write to GICC_EOIR must correspond to the most recent Non-secure read of GICC_IAR. However, when
GICC_CTLR.AcKCtl is set to 0, Non-secure software must not perform a GICC_IAR write for an interrupt if
Secure software has already performed the GICC_IAR write for that interrupt. If it does, the effect of the write is
UNPREDICTABLE.

Table 4-37 Effect of the Security Extensions on writes to GICC_EOIR

Interrupt status GICC_EOIR write GICC_CTLR.AckCtl Active status removed

Group 0 Non-secure x No

Secure x Yes

Group 1 Non-secure x Yes

Secure 1 Yes

Secure 0 UNPREDICTABLE
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-139
ID072613 Non-Confidential

4 Programmers’ Model
4.4 CPU interface register descriptions
Behavior of writes to GICC_EOIR, GICv2

See Priority drop and interrupt deactivation on page 3-38 for general information about the effect of writes to
GICC_EOIR, and about the possible separation of the GIC priority drop and interrupt deactivate operations in a
GICv2 implementation.

In a GICv2 implementation, when GICC_CTLR.AckCtl is set to 0:
• GICC_EOIR is used for processing Group 0 interrupts
• GICC_AEOIR is used for processing Group 1 interrupts.

In a GICv2 implementation that includes the GIC Security Extensions:

• GICC_CTLR.EOImodeS controls the behavior of Secure accesses to GICC_EOIR and GICC_AEOIR

• GICC_CTLR.EOImodeNS controls the behavior of Non-secure accesses to GICC_EOIR

• when GICC_CTLR.AckCtl is set to 0:

— a Non-secure write to GICC_EOIR must correspond to the most recent Non-secure read of GICC_IAR

— a Secure write to the GICC_AEOIR must correspond to the most recent Secure read of the
GICC_AIAR.

Table 4-38 shows how, for a GICv2 implementation, the security level of the GICC_EOR access, and the value of
the GICC_CTLR.AckCtl bit, determine the Priority drop effect of a valid GICC_EOIR write. It also shows how, in
a system that uses the suggested implementation for the Active Priorities Registers, the priority drop clears a bit in
either the Secure Active Priorities Register, GICC_APRn, or Non-secure Active Priorities Register,
GICC_NSAPRn. If the GIC does not implement the GIC Security Extensions, only the entries for the Secure
GICC_EOIR accesses apply.

Table 4-38 Priority drop effect of GICC_EOIR writes

GICC_EOIR
access GICC_CTLR.AckCtl Highest priority

active interrupt Effect

Non-secure - Group 1 Performs priority drop for Group 1 interrupts. In the Active
Priorities registers, clears the highest active Group 1 priority level

Non-secure - Group 0 Architecturally UNPREDICTABLE.
This access must not affect the set of active Group 0 priority levels.

Note
 The write might have an IMPLEMENTATION DEFINED effect. For
example, an implementation might clear the highest active Group
1 priority level in the Active Priorities registers.

Secure 0 - Performs priority drop for Group 0 interrupts. In the Active
Priorities registers, clears the highest active Group 0 priority level.

Secure 1 - Performs priority drop. The running priority, and priority drop, take
no account of interrupt grouping. In the Active Priorities registers,
clears the highest active priority level. This can be either a Group 0
or a Group 1 active priority depending on which is the higher. If the
highest active priority levels for both Group 0 and Group 1 are the
same, the effect is UNDEFINED.
4-140 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.4 CPU interface register descriptions
Table 4-39 shows how, for a GICv2 implementation, the security level of the GICC_EOR access, and the values of
the GICC_CTLR control bits, determine whether a valid GICC_EOIR write deactivates the identified interrupt. If
the GIC does not implement the GIC Security Extensions, the entries for the Non-secure GICC_EOIR accesses do
not apply.

For a GICv2 implementation that includes the Security Extensions, GICC_CTLR.EOImode is called:

• GICC_CTLR.EOImodeS for Secure accesses to GICC_EOIR. This setting also applies to Secure accesses to
GICC_AEOIR

• GICC_CTLR.EOImodeNS for Non-secure accesses to GICC_EOIR.

Table 4-39 Deactivate interrupt effect of GICC_EOIR writes

GICC_EOIR access GICC_CTLR.AckCtl EOImode bita Identified interrupt Effect

Non-secure - 0 Group 1 Interrupt deactivated

Non-secure - 0 Group 0 Access ignored

Secure - 0 Group 0 Interrupt deactivated

Secure 1 0 Group 1 Interrupt deactivated

Secure 0 0 Group 1 UNPREDICTABLE

- - 1 - Interrupt remains active

a. For a GICv2 implementation that does not include the Security Extensions.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-141
ID072613 Non-Confidential

4 Programmers’ Model
4.4 CPU interface register descriptions
4.4.6 Running Priority Register, GICC_RPR

The GICC_RPR characteristics are:

Purpose Indicates the Running priority of the CPU interface.

Usage constraints If there is no active interrupt on the CPU interface, the value returned is the Idle priority.

Note
 Software cannot determine the number of implemented priority bits from a read of this

register.

If the GIC implements the Security Extensions, the value returned by a Non-secure read of
the Priority field is:
• 0x00 if the field value is less than 0x80
• the Non-secure view of the Priority value if the field value is 0x80 or more.

For more information see Non-secure access to register fields for Group 0 interrupt
priorities on page 4-81.

Configurations This register is available in all configurations of the GIC. If the GIC implements the
Security Extensions this register is Common.

Attributes See the register summary in Table 4-2 on page 4-76.

Figure 4-29 shows the GICC_RPR bit assignments.

Figure 4-29 GICC_RPR bit assignments

Table 4-40 shows the GICC_RPR bit assignments.

The following pseudocode shows the effects of the GIC Security Extensions on accesses to this register:

// ReadGICC_RPR()
// ==============
//
// Value of GICC_RPR read by a processor access
//

bits(8) ReadGICC_RPR()

 read_value = GICC_RPR<7:0>;
 if NS_access then // A non-secure GIC access,
 if read_value<7> == '0' then // therefore, adjust value.
 read_value = '00000000'; // A secure priority value, RAZ
 else
 read_value = LSL((read_value AND P_MASK), 1);
 return(read_value);

31 7 0

Reserved

8

Priority

Table 4-40 GICC_RPR bit assignments

Bit Name Description

[31:8] - Reserved.

[7:0] Priority The current running priority on the CPU interface.
4-142 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.4 CPU interface register descriptions
4.4.7 Highest Priority Pending Interrupt Register, GICC_HPPIR

The GICC_HPPIR characteristics are:

Purpose Indicates the Interrupt ID, and processor ID if appropriate, of the highest priority pending
interrupt on the CPU interface.

Usage constraints Never returns the Interrupt ID of an interrupt that is active and pending. Returns a processor
ID only for an SGI in a multiprocessor implementation.

If the GIC supports interrupt grouping, the value returned by a read of GICC_HPPIR can
depend on:

• the value of GICC_CTLR.AckCtl

• if the GIC implements the Security Extensions, whether the register access is Secure
or Non-secure:

See Effect of interrupt grouping and the Security Extensions on reads of the GICC_HPPIR.

Configurations This register is available in all configurations of the GIC. If the GIC implements the
Security Extensions this register is Common.

Attributes See the register summary in Table 4-2 on page 4-76.

Figure 4-30 shows the GICC_HPPIR bit assignments.

Figure 4-30 GICC_HPPIR bit assignments

Table 4-41 shows the GICC_HPPIR bit assignments.

Effect of interrupt grouping and the Security Extensions on reads of the GICC_HPPIR

If a CPU interface supports interrupt grouping, whether a read of the GICC_HPPIR returns a valid interrupt ID
depends on:
• whether the highest priority pending interrupt is configured as a Group 0 or a Group 1 interrupt
• the value of the GICC_CTLR.AckCtl bit.
• if the GIC implements the Security Extensions, whether the GICC_HPPIR read access is Secure or

Non-secure.

31 9 0

Reserved

10

PENDINTID

1213

CPUID

Table 4-41 GICC_HPPIR bit assignments

Bit Name Description

[31:13] - Reserved.

[12:10] CPUID On a multiprocessor implementation, if the PENDINTID field returns the ID of an
SGI, this field contains the CPUID value for that interrupt. This identifies the
processor that generated the interrupt.
In all other cases this field is RAZ.

[9:0] PENDINTID The interrupt ID of the highest priority pending interrupt. See Table 4-42 on
page 4-144 for more information about the result of Non-secure reads of the
GICC_HPPIR when the GIC implements the Security Extensions.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-143
ID072613 Non-Confidential

4 Programmers’ Model
4.4 CPU interface register descriptions
Reads of the GICC_HPPIR that do not return a valid interrupt ID returns a spurious interrupt ID, ID 1022 or 1023,
see Special interrupt numbers when a GIC supports interrupt grouping on page 3-50. Table 4-42 shows all possible
GICC_HPPIR reads for a CPU interface that implements the Security Extensions on a GIC that supports interrupt
grouping. If the CPU interface does not implement the Security Extensions, the entries that apply to Secure
GICC_HPPIR reads describe the behavior.

The following pseudocode shows the effects of the GIC Security Extensions on accesses to this register:

// ReadGICC_HPPIR()
// ================
//
// Value of GICC_HPPIR read by a CPU access

bits(32) ReadGICC_HPPIR(integer cpu_id)
 // cpu_id identifies the accessed CPU interface
 // GICC_CTLR[cpu_id] is the GICC_CTLR register for that interface

 pendID = HighestPriorityPendingInterrupt(cpu_id);

 if (IsGrp0Int(pendID) && GICD_CTLR.EnableGrp0 == '0') ||
 (!IsGrp0Int(pendID) && GICD_CTLR.EnableGrp1 == '0')
 then
 pendID = 1023; // If required group is not enabled, then no interrupt

 if GICC_MASK_HPPIR // GICC_MASK_HPPIR indicates the IMPLEMENTATION DEFINED
 // choice whether GICC_CTLR.EnableGrp{0,1} being zero
 then // returns a spurious interrupt
 if (IsGrp0Int(pendID) && GICC_CTLR[cpu_id].EnableGrp0 == '0') ||
 (!IsGrp0Int(pendID) && GICC_CTLR[cpu_id].EnableGrp1 == '0')
 then
 pendID = 1023; // If required group is not enabled, then no interrupt

 if pendID != 1023 then // An enabled interrupt is pending
 if IsGrp0Int(pendID) then // Highest priority is Group 0
 if NS_access then
 pendID = 1023;
 else // Highest priority is Group 1
 if !NS_access && (GICC_CTLR[cpu_id].AckCtl == '0') then
 pendID = 1022;

 cpuID = 0; // Must be zero for non-SGI interrupts

 if pendID < 16 then // 0 .. 15 are Software Generated Interrupts
 sgiID = SGI_CpuID(pendID); // value is IMPLEMENTATION DEFINED

 rval = 0;
 rval<12:10> = sgiID;
 rval<9:0> = pendID;

 return(rval);

Table 4-42 Effect of the Security Extensions on GICC_HPPIR reads

Current state GICC_HPPIR read GICC_CTLR.AckCtl Returned interrupt ID

Highest priority pending interrupt is Group 1 Non-secure x ID of Group 1 interrupt

Secure 0 Spurious interrupt ID 1022

1 ID of Group 1 interrupt

Highest priority pending interrupt is Group 0 Non-secure x Spurious interrupt ID 1023

Secure x ID of Group 0 interrupt

No pending interrupts x Spurious interrupt ID 1023
4-144 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.4 CPU interface register descriptions
4.4.8 Aliased Binary Point Register, GICC_ABPR

The GICC_ABPR characteristics are:

Purpose A Binary Point Register for handling Group 1 interrupts.

The reset value of this register is defined as (minimum GICC_BPR.Binary point + 1),
resulting in a permitted range of 0x1-0x4.

Usage constraints If the GIC implements the Security Extensions, accessible by Secure accesses only.

Configurations This register is present only in GICv2, and in GICv1 implementations that include the
Security Extensions,

In a GIC implementation that includes the Security Extensions, GICC_ABPR is an alias of
the Non-secure GICC_BPR, and when GICC_CTLR.CBPR is set to 0, a Secure access to
this register is equivalent to a Non-secure access to GICC_IAR.

Note
 • GICC_ABPR is redundant when GICC_CTLR.CBPR is set to 1. In a GIC

implementation that includes the Security Extensions, when GICC_CTLR.CBPR is
set to 1, the behavior of Secure accesses to GICC_ABPR is not identical to the
behavior of Non-secure accesses to GICC_BPR

• Accesses to the GICC_ABPR are unaffected by the value of the GICC_CTLR.CBPR
bit.

If the GIC implementation includes the Security Extensions, GICC_ABPR is a Secure
register. If the GIC does not implement the GICC_ABPR, the address is RAZ/WI.

Attributes See the register summary in Table 4-2 on page 4-76.

Figure 4-31 shows the GICC_ABPR bit assignments.

Figure 4-31 GICC_ABPR bit assignments

Table 4-43 shows the GICC_ABPR bit assignments.

Note
 In a GIC implementation that includes the Security Extensions, aliasing the Non-secure GICC_BPR as the
GICC_ABPR means that, in a multiprocessor system, a processor that can make only Secure accesses to the GIC
can access the GICC_ABPR, to configure the preemption setting for Group 1 interrupts.

31 2 0

Reserved

3

Binary
point

Table 4-43 GICC_ABPR bit assignments

Bits Name Function

[31:3] - Reserved.

[2:0] Binary point The value of this field controls how the 8-bit interrupt priority field is split into a group
priority field, used to determine interrupt preemption, and a subpriority field. For how this
field determines the interrupt priority bits assigned to the group priority field see:
• Table 3-7 on page 3-57, for the processing of Group 1 interrupts on a GIC that

supports interrupt grouping, when the GICC_CTLR.CBPR bit is set to 1
• Table 3-2 on page 3-46, for all other cases.
See Priority grouping on page 3-45 for more information.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-145
ID072613 Non-Confidential

4 Programmers’ Model
4.4 CPU interface register descriptions
4.4.9 Aliased Interrupt Acknowledge Register, GICC_AIAR

The GICC_AIAR characteristics are:

Purpose An Interrupt Acknowledge register for handling Group 1 interrupts.

The processor reads this register to obtain the interrupt ID of the signaled Group 1 interrupt.
This read acts as an acknowledge for the interrupt.

Usage constraints If the GIC implements the Security Extensions, accessible by Secure accesses only.

Configurations This register is present only in GICv2. If the GIC implements the Security Extensions,
GICC_AIAR is an alias of the Non-secure view of GICC_IAR, and a Secure access to this
register is identical to a Non-secure access to GICC_IAR.

If the GIC implements the Security Extensions this is a Secure register.

Attributes See the register summary in Table 4-2 on page 4-76.

Figure 4-32 shows the GICC_AIAR bit assignments.

Figure 4-32 GICC_AIAR bit assignments

Table 4-44 shows the GICC_AIAR bit assignments.

31 9 0

Reserved

10

Interrupt ID

1213

CPUID

Table 4-44 GICC_AIAR bit assignments

Bit Name Function

[31:13] - Reserved, SBZ.

[12:10] CPUID For SGIs in a multiprocessor implementation, this field identifies the processor that
requested the interrupt. It returns the number of the CPU interface that made the request,
for example a value of 3 means the request was generated by a write to the GICD_SGIR
on CPU interface 3.
For all other interrupts this field is RAZ.

[9:0] Interrupt ID The interrupt ID.
4-146 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.4 CPU interface register descriptions
4.4.10 Aliased End of Interrupt Register, GICC_AEOIR

The GICC_AEOIR characteristics are:

Purpose An end of interrupt register for handling Group 1 interrupts.

When GICC_CTLR.AckCtl is set to 0, a write to this register performs priority drop for the
identified Group 1 interrupt, and if the appropriate GICC_CTLR EOImode bit is set to 0,
also deactivates the interrupt. For more information see Priority drop and interrupt
deactivation on page 3-38.

Note
 In a GIC that implements interrupt grouping, when GICC_CTLR.AckCtl is set to 0 the

Secure GICC_EOIR cannot be used for this purpose because a write to that register affects
GICC_APRn, not GICC_NSAPRn.

Usage constraints A write to this register must correspond to the most recently acknowledged Group 1
interrupt.

If the GIC implementation includes the Security Extensions, this is a Secure register.

Configurations This register is present only in GICv2.

If the GIC implements the Security Extensions, GICC_AEOIR is effectively an alias of the
Non-secure GICC_EOIR. A Secure access to this register is similar to a Non-secure access
to GICC_EOIR, except that the GICC_CTLR.EOImodeS bit is used. See End of Interrupt
Register, GICC_EOIR on page 4-138 for more information.

If the GIC implements the Security Extensions, this is a Secure register.

Attributes See the register summary in Table 4-2 on page 4-76.

Figure 4-33 shows the GICC_AEOIR bit assignments

Figure 4-33 GICC_AEOIR bit assignments

Table 4-45 shows the GICC_AEOIR bit assignments.

The effect is UNPREDICTABLE if a value other than the last value read from the GICC_AIAR is written to
GICC_AEOIR.

31 9 0

Reserved

10

Interrupt ID

1213

CPUID

Table 4-45 GICC_AEOIR bit assignments

Bit Name Function

[31:13] - Reserved, SBZ.

[12:10] CPUID On a multiprocessor implementation, when processing an SGI, this field must contain
the CPUID value from the corresponding GICC_AIAR, or Non-secure GICC_IAR,
access.
In all other cases this field SBZ.

[9:0] Interrupt ID The Interrupt ID value from the corresponding GICC_AIAR, or Non-secure GICC_IAR,
access.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-147
ID072613 Non-Confidential

4 Programmers’ Model
4.4 CPU interface register descriptions
4.4.11 Aliased Highest Priority Pending Interrupt Register, GICC_AHPPIR

The GICC_AHPPIR characteristics are:

Purpose Provides a Highest Priority Pending Interrupt register for the handling of Group 1 interrupts.

If the highest priority pending interrupt on the CPU interface is a Group 1 interrupt, returns
the interrupt ID of that interrupt. Otherwise, returns a spurious interrupt ID of 1023.

Usage constraints Never returns the Interrupt ID of an interrupt that is active and pending. If the GIC
implements the Security Extensions, accessible by Secure accesses only.

Configurations This register is present only in GICv2.

If the GIC implements the Security Extensions, GICC_AHPPIR is an alias of the
Non-secure GICC_HPPIR, and a Secure access to this register is equivalent to a Non-secure
access to GICC_HPPIR.

If the GIC implements the Security Extensions this is a Secure register.

Attributes See the register summary in Table 4-2 on page 4-76.

Figure 4-34 shows the GICC_AHPPIR bit assignments.

Figure 4-34 GICC_AHPPIR bit assignments

Table 4-46 shows the GICC_AHPPIR bit assignments.

31 9 0

Reserved

10

PENDINTID

1213

CPUID

Table 4-46 GICC_AHPPIR bit assignments

Bit Name Description

[31:13] - Reserved.

[12:10] CPUID On a multiprocessor implementation, if the PENDINTID field returns the ID of an
SGI, this field contains the CPUID value for that interrupt. This identifies the
processor that generated the interrupt.
In all other cases this field is RAZ.

[9:0] PENDINTID The interrupt ID of the highest priority pending interrupt, if that interrupt is a Group 1
interrupt. Otherwise, the spurious interrupt ID, 1023.
4-148 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.4 CPU interface register descriptions
4.4.12 Active Priorities Registers, GICC_APRn

The GICC_APR characteristics are:

Purpose These are IMPLEMENTATION DEFINED registers that provide support for preserving and
restoring the active priority in power-management implementations.

Usage constraints Although the format of these registers is IMPLEMENTATION DEFINED:

• because GICv2 guarantees the ability to save and restore all GIC state, the
GICC_APRn registers must be present in all GIC implementations

• in an implementation that includes the GIC Security Extensions, Non-secure
accesses must not affect Secure operation, and the architecture requires that these
registers are banked, to provide Secure and Non-secure copies of the registers.

Configurations These registers are present only in GICv2. The register locations are reserved in GICv1.

The number of Active Priorities registers implemented depends on the number of
Preemption levels supported, see Table 4-47 on page 4-150. If the GIC does not implement
the Security Extensions, these registers hold the active priorities for the Group 0 interrupts.

Note
 The GICC_NSAPRn registers always hold the active priorities for the Group 1 interrupts.

If the GIC implements the Security Extensions, these registers are banked to provide Secure
and Non-secure copies, see Register banking on page 4-77. This ensures that:
• Non-secure accesses do not affect Secure operation
• the Non-secure copies of these registers provide a Non-secure view of the priorities

of the Group 1 interrupts, see Software views of interrupt priority in a GIC that
includes the Security Extensions on page 3-53.

• the Secure copies of these registers track active priorities for Group 0 interrupts.

Note
 The Secure copies of the GICC_NSAPRn registers track active priorities for Group

1 interrupts.

Attributes See the register summary in Table 4-2 on page 4-76.

Note
 These registers are IMPLEMENTATION DEFINED, but ARM strongly recommends that, when these registers are
implemented, they follow the guidelines in this section.

If the GIC implementation includes the Security Extensions, some of the Active Priorities Register space is visible
to Non-secure accesses in a manner consistent with the Group 1 interrupt priority level remapping, see Software
views of interrupt priority in a GIC that includes the Security Extensions on page 3-53 and The effect of interrupt
grouping on priority grouping on page 3-57. This means only the lower half of the Preemption level space is visible,
but remapped so it appears in the upper half of the preemption level space, as Table 4-47 on page 4-150 shows.

See Priority grouping on page 3-45 for more information about priority grouping and preemption levels.

Predictable system restoration is guaranteed if the GICC_APRn registers are saved before powering down and
restored after powering up. However, if a different value is written when restoring the register, or if any other value
is written to the register during operation, behavior is UNPREDICTABLE.

To ensure stability:

• ARM recommends that software uses these registers only for the purpose of saving and restoring state

• both the GICC_APRn and the GICC_NSAPRn must include a bit for each preemption level that the system
permits.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-149
ID072613 Non-Confidential

4 Programmers’ Model
4.4 CPU interface register descriptions
In an implementation that includes the GIC Security Extensions:

• Non-Secure register accesses must only access bits corresponding to preemption levels in the Non-Secure
priority space, but return the Non-secure view of those priorities, see Software views of interrupt priority in
a GIC that includes the Security Extensions on page 3-53

• the GICC_NSAPRn registers must provide the Distributor view of the active priorities of the Group 1
interrupts.

Table 4-47 shows the GICC_APR implementation.

Table 4-47 Active Priorities register implementation

Minimum
value of
Secure
GICC_BPR

Minimum
value of
Non-secure
GICC_BPR

Maximum
number of group
priority bits

Maximum
number of
preemption
levels

GICC_APRn
implementation

View of Active Priorities
Registers for Non-secure
accessesa

3 4 4 16 GICC_APR0[15:0] GICC_NSAPR0[15:8] appears
as GICC_APR0[7:0]

2 3 5 32 GICC_APR0[31:0] GICC_NSAPR0[31:16]
appears as GICC_APR0[15:0]

1 2 6 64 GICC_APR0-
GICC_APR1

GICC_NSAPR1 appears as
GICC_APR0

0 1 7 128 GICC_APR0-
GICC_APR3

GICC_NSAPR2-
GICC_NSAPR3 appear as
GICC_APR0-GICC_APR1

a. In a GIC implementation that includes the GIC Security Extensions.
4-150 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.4 CPU interface register descriptions
4.4.13 Non-secure Active Priorities Registers, GICC_NSAPRn

The GICC_NSAPR characteristics are:

Purpose These are IMPLEMENTATION DEFINED registers that provide support for preserving and
restoring the active priority in power-management implementation. These are separate
registers for Group 1 interrupts.

Software on the connected processor can save or restore the complete active priorities state
by:

• using the GICC_APRn registers to save or restore the state for the Group 0 interrupts

• using the GICC_NSAPRn registers to save or restore the state for the Group 1
interrupts.

In an implementation that includes the Security Extensions:

• these registers ensure that Non-secure accesses cannot interfere with Secure
operation

• Secure software on the connected processor can save or restore the complete active
priorities state using the GICC_APRn and the GICC_NSAPRn registers.

Usage constraints Although the format of these registers is IMPLEMENTATION DEFINED:

• because GICv2 guarantees the ability to save and restore all GIC state, the
GICC_NSAPRn registers must be present in all GIC implementations

• in an implementation that includes the Security Extensions, these registers are
accessible only by Secure accesses.

Configurations These registers are present only in GICv2 implementations that include the GIC Security
Extensions. The register locations are reserved in GICv1.

These are Secure registers.

The number of Active Priorities registers implemented depends on the number of levels of
preemption level supported, see Table 4-47 on page 4-150.

Attributes See the register summary in Table 4-2 on page 4-76.

To support situations where Secure software elevates Group 1 interrupt priorities into Group 0 priority space, these
registers must be large enough to contain the entire supported priority space. Therefore, the implemented
GICC_NSAPRn register set is identical in format to the GICC_APRn register set, but contains the active priorities
of Group 1 interrupts rather than Group 0 interrupts. If the GIC implementation includes the Security Extensions,
the lower priority half of these registers can be accessed by Non-secure software accessing the Non-secure copies
of the GICC_APRn registers, but these accesses return a Non-secure view of the interrupt priorities, as Table 4-47
on page 4-150 shows.

See Active Priorities Registers, GICC_APRn on page 4-149 or more information about the implementation of these
registers.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-151
ID072613 Non-Confidential

4 Programmers’ Model
4.4 CPU interface register descriptions
4.4.14 CPU Interface Identification Register, GICC_IIDR

The GICC_IIDR characteristics are:

Purpose Provides information about the implementer and revision of the CPU interface.

Usage constraints No usage constraints.

Configurations This register is available in all configurations of the GIC. If the GIC implements the
Security Extensions this register is Common.

Attributes See the register summary in Table 4-2 on page 4-76.

Figure 4-35 shows the GICC_IIDR bit assignments.

Figure 4-35 GICC_IIDR bit assignments

Table 4-48 shows the GICC_IIDR bit assignments.

31 0

Revision Implementer

20 11

ProductID

19 121516

Architecture
version

Table 4-48 GICC_IIDR bit assignments

Bit Name Description

[31:20] ProductID An IMPLEMENTATION DEFINED product identifier.

[19:16] Architecture version The value of this field depends on the GIC architecture version, as follows:
• 0x1 for GICv1
• 0x2 for GICv2.

[15:12] Revision An IMPLEMENTATION DEFINED revision number for the CPU interface.

[11:0] Implementer Contains the JEP106 code of the company that implemented the GIC CPU
interface:a

Bits [11:8] The JEP106 continuation code of the implementer.
Bit [7] Always 0.
Bits [6:0] The JEP106 identity code of the implementer.

a. For an ARM implementation, the value of this field is 0x43B.
4-152 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.4 CPU interface register descriptions
4.4.15 Deactivate Interrupt Register, GICC_DIR

The GICC_DIR characteristics are:

Purpose When interrupt priority drop is separated from interrupt deactivation, as described in
Priority drop and interrupt deactivation on page 3-38, a write to this register deactivates the
specified interrupt.

Usage constraints Writes to this register only have an effect when:

• for a GIC implementation that does not include the Security Extensions,
GICC_CTLR.EOImode is set to 1

• for a GIC implementation that includes the Security Extensions:
— for Secure accesses to the register, GICC_CTLR.EOImodeS is set to 1
— for Non-secure accesses to the register, GICC_CTLR.EOImodeNS is set to 1.

If the relevant EOImode bit is 0 then the effect of this register access is UNPREDICTABLE.

If the interrupt identified in the GICC_DIR is not active, and is not a spurious interrupt, the
effect of the register write is UNPREDICTABLE. This means any GICC_DIR write must
identify an interrupt for which there has been a valid GICC_EOIR or GICC_AEOIR write.

Unlike GICC_EOIR and GICC_AEOIR writes, there is no ordering requirement for
GICC_DIR writes, provided they meet the other requirements given in this section.

ARM recommends that the value written to GICC_DIR is the 32-bit value returned by the
corresponding GICC_IAR or GICC_AIAR read.

Configurations This register is present only in GICv2. The register location is reserved in GICv1. If the GIC
implements the Security Extensions this register is Common.

Attributes See the register summary in Table 4-2 on page 4-76.

Note
 There is no requirement to deactivate interrupts in any particular order.

Figure 4-36 shows the GICC_DIR bit assignments.

Figure 4-36 GICC_DIR bit assignments

Table 4-49 shows the GICC_DIR bit assignments.

Reserved

31 13 12 10 9 0

CPUID InterruptID

Table 4-49 GICC_DIR bit assignments

Bit Name Description

[31:13] - Reserved, SBZ

[12:10] CPUID For an SGI in a multiprocessor implementation, this field
identifies the processor that requested the interrupt.
For all other interrupts this field is RAZ.

[9:0] Interrupt ID The interrupt ID
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-153
ID072613 Non-Confidential

4 Programmers’ Model
4.4 CPU interface register descriptions
Behavior of writes to the GICC_DIR

Regardless of the state of the GICC_CTLR.AckCtl bit:

• if the implementation does not include the Security Extensions, a valid write to GICC_DIR deactivates the
specified interrupt, regardless of whether that interrupt is in Group 0 or Group 1

• if the implementation includes the Security Extensions, a valid:

— Secure write to GICC_DIR deactivates the specified interrupt, regardless of whether that interrupt is
in Group 0 or Group 1

— Non-secure write to GICC_DIR deactivates the specified interrupt only if that interrupt is in Group 1.
A valid write is one that specifies an interrupt that is active, and for which there has been a successful
write to GICC_EOIR or GICC_AEOIR.

Table 4-50 shows the behavior of valid writes to GICC_DIR. In an implementation that does not include the
Security Extensions, valid writes have the behavior shown for Secure GICC_DIR writes.

Table 4-50 Behavior of GICC_DIR writes

GICC_CTLR.AckCtl GICC_DIR write Interrupt group Effect

x Non-secure Group 1 Interrupt is deactivated.

x Non-secure Group 0 Write is ignored.

x Secure x Interrupt is deactivated.
4-154 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

4 Programmers’ Model
4.5 Preserving and restoring GIC state
4.5 Preserving and restoring GIC state
Some situations require the system to save and restore the state of the GIC, or particular interrupts. For example:
• during system shutdowns
• when migrating the state of one CPU to another in a multiprocessor implementation
• in a system that supports processor virtualization, when changing between virtual machines.

To support this functionality, GICv2 provides:

• The ability to save and restore the active state held in GICD_ISACTIVERn and GICD_ICACTIVERn.

Note
 Implementations must not contain additional state, such as active bits per source processor for SGIs, because

such additional state is not restored during these operations. For example, operations that preserve and restore
GIC state by saving the Set-active bits from GICD_ISACTIVERn must be capable of saving and restoring
all active state information.

• The ability to set and clear pending SGIs, provided by GICD_CPENDSGIRn and GICD_SPENDSGIRn.

• Active Priorities registers, GICC_APRn and GICC_NSAPRn, that provide the ability to access directly the
associated GIC architecture state, and to save and restore that state.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 4-155
ID072613 Non-Confidential

4 Programmers’ Model
4.5 Preserving and restoring GIC state
4-156 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

Chapter 5
GIC Support for Virtualization

This chapter describes the GIC Virtualization Extensions introduced in GICv2, and using these to implement a GIC
in a system with at least one processor that implements the ARM Virtualization Extensions. It contains the following
sections:
• About implementing a GIC in a system with processor virtualization on page 5-158
• Managing the GIC virtual CPU interface on page 5-160
• GIC virtual interface control registers on page 5-167
• The virtual CPU interface on page 5-178
• GIC virtual CPU interface registers on page 5-179.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 5-157
ID072613 Non-Confidential

5 GIC Support for Virtualization
5.1 About implementing a GIC in a system with processor virtualization
5.1 About implementing a GIC in a system with processor virtualization
With a GIC that includes the GIC Virtualization Extensions, a virtual machine running on a processor that includes
the ARMv7-A Virtualization Extensions communicates with a virtual CPU interface on the GIC. The virtual
machine receives virtual interrupts from this interface, and cannot distinguish these interrupts from physical
interrupts.

A hypervisor handles all IRQs, translating those destined for a virtual machine into virtual interrupts, and, in
conjunction with the GIC, manages the virtual interrupts and the associated physical interrupts. It also uses the GIC
virtual interface control registers to manage the virtual CPU interface. As part of this control, the hypervisor updates
the List registers, that are a subset of the GIC virtual interface control registers. In this way the hypervisor and GIC
together provide a virtual distributor, that appears to a virtual machine as the physical GIC distributor.

The GIC virtual CPU interface signals virtual interrupts to the virtual machine, subject to the normal GIC handling
and prioritization rules. Figure 5-1 on page 5-159 shows an example of how the GIC handles interrupts in a
implementation that supports processor virtualization.

Note
 • Any ARM processor implementation that includes the Virtualization Extensions must also include the

Security Extensions. Such a processor is usually implemented with a GIC that implements both the GIC
Security Extensions and GIC Virtualization Extensions. The examples in this chapter only describe such an
implementation, for which:
— Group 0 physical interrupts are Secure interrupts
— Group 1 physical interrupts are Non-secure interrupts.
— the hypervisor performs the initial processing of all physical IRQs, virtualizing them as required as

virtual IRQs or virtual FIQs
— Secure Monitor mode performs the initial processing of all physical FIQs.

See Security Extensions support on page 1-16 for more information.

• In descriptions of processor virtualization, a virtual machine runs a Guest OS, that runs applications. In many
contexts, the terms virtual machine and Guest OS are synonymous.

In the ARM model for virtualizing Non-secure operation of a processor that implements the ARM Virtualization
Extensions, Secure software on the processor must configure the system as described in Using IRQs and FIQs to
provide Non-secure and Secure interrupts on page 3-68, so that FIQs are used for Secure interrupts, and IRQs for
Non-secure interrupts.

When the hypervisor receives an IRQ, it determines whether the interrupt is for itself, or for a virtual machine. If it
is for a virtual machine it determines which virtual machine must handle the interrupt and generates a virtual
interrupt, see Managing the GIC virtual CPU interface on page 5-160.

The GIC Virtualization Extensions provide the following support for a virtual CPU interface:

• GIC virtual interface control registers. These are management registers, accessed by a hypervisor, or similar
software. See Managing the GIC virtual CPU interface on page 5-160 for more information.

• GIC virtual CPU interface registers. These registers provide the virtual CPU interface accessed by the current
virtual machine on a connected processor. In general, they have the same format as the GIC physical CPU
interface registers, but they operate on the interrupt view defined by the List registers.

A virtual machine communicates with the virtual CPU interface, but cannot detect that it is not communicating with
a GIC physical CPU interface.

The virtual CPU interface and the GIC virtual interface control registers are both in the Non-secure memory map.
A hypervisor uses the Non-secure stage 2 address translations to ensure that the virtual machine cannot access the
GIC virtual interface control registers. To support this, the GIC architecture requires the GIC virtual CPU interface
registers and the GIC virtual interface control registers to be in separate 4KB address regions. See the ARM
Architecture Reference Manual, ARMv7-A and ARMv7-R edition for more information about the ARM
Virtualization Extensions and Non-secure address translation.
5-158 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

5 GIC Support for Virtualization
5.1 About implementing a GIC in a system with processor virtualization
GIC register names on page 4-74 describes the naming convention for the GIC registers, which means that:
• a name starting GICH_ indicates a register described in GIC virtual interface control registers on page 5-167
• a name starting GICV_ indicates a register described in GIC virtual CPU interface registers on page 5-179.

As with a physical CPU interface, the virtual CPU interface signals an interrupt if the highest priority pending
interrupt has sufficient priority. However, the signaled interrupt is a virtual interrupt rather than a physical interrupt.
The List registers indicate whether the interrupt is in Group 0 or Group 1 and therefore whether it is signaled as a
virtual IRQ or a virtual FIQ.

The virtual machine:
• acknowledges a virtual interrupt by reading from the Interrupt Acknowledge Register.
• indicates when it has completed interrupt processing by writing to the End of Interrupt Register.

These writes update the List registers. See Acknowledgement and completion of virtual interrupts on page 5-162 for
more information.

Figure 5-1 shows the model for implementing a GIC with an ARMv7-A processor that implements the processor
Virtualization Extensions.

Figure 5-1 Implementing the GIC with an ARM processor that supports virtualization

Distributor

GICD_IGROUP

Hardware interrupt

Processor

GIC

EnableGrp0 EnableGrp1

FIQEn==1
Hypervisor

Guest OS 0
Non-secure

System software

Secure Monitor
Secure

software

Virtual Distributor

List Registers IRQ assignment

Group 0
virtual

interrupt

Group 0
interrupt

Guest OS 1
Guest OS 2

EnableGrp0 EnableGrp1

FIQEn==1

Virtual CPU interface

CPU interface

vFIQ

vIRQ

IRQ

FIQ

SoC

Maintenance
interrupt

Group 1
virtual

interrupt

Register
updates

Group 1
interrupt
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 5-159
ID072613 Non-Confidential

5 GIC Support for Virtualization
5.2 Managing the GIC virtual CPU interface
5.2 Managing the GIC virtual CPU interface
This section describes the ARM model for virtualizing ARMv7-A processor that implements the processor
Virtualization Extensions.

The hypervisor, or similar software, manages the GIC virtual interface control registers, consisting of:

List registers Used to define the active and pending virtual interrupts for the virtual CPU interface. The current
virtual machine accesses these interrupts indirectly, using the virtual CPU interface.

Management registers

Used to manage the virtual CPU interface, and to save and restore settings when switching between
virtual machines.

On the processor, the hypervisor:

• configures IRQs to be taken in Hyp mode, so that it handles all IRQs itself

• uses the stage 2 Non-secure address translations to:

— trap all Guest OS accesses to the GIC Distributor registers, so that it can determine the virtual
distributor settings for each virtual machine

— ensure that the virtual machines cannot access the GIC virtual interface control registers

— remap the GIC CPU interface register address space to point to the GIC virtual CPU interface registers.

• configures the required maintenance interrupts from the virtual CPU interface, see Maintenance interrupts
on page 5-164.

The hypervisor controls, and switches between, the virtual machines. When it starts a virtual machine, it programs
the List registers to define the interrupts that are visible to that virtual machine.

When it receives a physical IRQ, the hypervisor determines the required destination of the interrupt and then either:

• Processes the interrupt itself, for example if the IRQ is a maintenance interrupt from the virtual CPU
interface. It then deactivates the physical interrupt.

• Generates a virtual interrupt. Depending on the interrupt priority and the targeted virtual machine, the
hypervisor takes one of the following actions:

— If the interrupt is for the current virtual machine, updates the List registers with details of the interrupt,
redefining the interrupts that are visible to the current virtual machine. If there is no space in the List
registers, it saves the context to memory so the details can be added at a later stage. See List registers
and virtual interrupt handling on page 5-161 for more information.

— Records that the interrupt is for a different virtual machine by saving details of the interrupt as part of
the hypervisor state associated with that virtual machine.

— Switches to a different virtual machine that can handle the interrupt. In doing so it must save the
interrupt state for the current virtual machine, using the information in the List registers, and
reprogram the List registers, to indicate the interrupt state for the new virtual machine, including the
state for the interrupt that has arrived.

The virtual machine accesses the GIC virtual CPU interface registers. These registers have the same general format
as the physical CPU interface registers, and, in a typical implementation the virtual machine believes it is accessing
a physical CPU interface. These accesses update the state and status bits in the List registers.

When the virtual machine handles a virtual interrupt, it writes to the virtual CPU interface to indicate when it has
finished this processing. The virtual CPU interface signals this completion to the physical Distributor and the
physical Distributor then deactivates the interrupt.

Note
 The hypervisor is not part of the GIC architecture. It is supported by the ARMv7-A Architecture Virtualization
Extensions. The hypervisor runs as Non-secure software in Hyp mode. See the ARM Architecture Reference
Manual, ARMv7-A and ARMv7-R edition for more information.
5-160 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

5 GIC Support for Virtualization
5.2 Managing the GIC virtual CPU interface
The remainder of this section describes:
• List registers and virtual interrupt handling
• Completion of virtualized physical interrupts
• Acknowledgement and completion of virtual interrupts on page 5-162
• GIC virtual interface control interface requirements on page 5-164
• Maintenance interrupts on page 5-164
• Software-generated interrupts on page 5-165
• GIC Virtualization Extensions register mapping on page 5-165.

5.2.1 List registers and virtual interrupt handling

With a GIC implementation that includes the Virtualization Extensions, a hypervisor uses List registers to maintain
the list of highest priority virtual interrupts. The total number of interrupts that are either pending, active, or active
and pending, can exceed the number of List registers available. If this happens, the hypervisor can save one or more
active interrupt entries to memory, and later restore them to the List registers, based on their priority. Therefore:

• The List registers might not include all active, or active and pending, interrupts. Virtual CPU interface
accesses by the virtual machine update the List registers, and normally an EOI request from the virtual
machine deactivates an interrupt in the list. However, the virtual machine can issue an EOI request for an
interrupt before the hypervisor restores the associated active interrupt entry into a List register. In this case,
the EOI request cannot update the List registers.

Note
 Only hypervisor-generated interrupts can be active and pending.

• Although the List registers might include only active interrupts, with the hypervisor maintaining any pending
interrupts in memory, a pending interrupt cannot be signaled to the virtual machine until the hypervisor adds
it to the List registers. Therefore, to minimize interrupt latency and ensure efficient virtual machine operation,
ARM strongly recommends that the List registers contain at least one pending interrupt, provided a List
register is available for this interrupt.

To maintain the 1-N interrupt handling model, a hypervisor might have to migrate an interrupt from one virtual
machine to another. An example of when this might be necessary is when enabling or disabling a virtual CPU
interface.

The GIC Virtualization Extensions include the following features to support virtual interrupt handling:
• Priority drop functionality is separate from interrupt deactivation, see Completion of virtualized physical

interrupts.
• Maintenance interrupts signal key events, see Maintenance interrupts on page 5-164.

5.2.2 Completion of virtualized physical interrupts

This section describes the procedure that ARM recommends for the completion of a physical interrupt that has been
virtualized. Using these procedures reduces the amount of hypervisor intervention required, meaning the hypervisor
can receive new physical interrupts as early as possible. This prevents physical interrupts from being prematurely
resignaled to the hypervisor.

When virtualizing physical interrupts, ARM recommends that, for each CPU interface that corresponds to a
processor running virtual machines, the GICC_CTLR.EOImodeNS bit is set to 1. This means that hypervisor
accesses to the GICC_EOIR register drops the running priority of the CPU interface but does not deactivate the
interrupt. After writing to the EOI register, the running priority level on the CPU interface is lower, so that
subsequent interrupts can be signaled to the processor.

ARM recommends that physical interrupt completion consists of the following separate steps:
1. EOI
2. interrupt deactivation.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 5-161
ID072613 Non-Confidential

5 GIC Support for Virtualization
5.2 Managing the GIC virtual CPU interface
These steps are explained in more detail as follows:

1. After receiving a physical interrupt, the hypervisor performs an EOI request for the physical interrupt by
writing to the GICC_EOIR or GICC_AEOIR register. After EOI, although the virtual machine has not
processed the virtual interrupt, the lower running priority of the CPU interface means that the hypervisor can
still receive new physical interrupts.

This enables the hypervisor to set the priority of new interrupts as they arrive, providing more flexibility than
the EOI procedure for non-virtualized physical interrupts described in General handling of interrupts on
page 3-37.

Note
 The only interrupts that are not signaled to the hypervisor are the physical interrupts most recently subject to

EOI. This is because the interrupts have not been deactivated. This prevents the interrupts from being
re-signaled to the hypervisor before being processed by the virtual machine.

2. After the virtual machine completes processing the corresponding virtual interrupt, it writes to the
GICV_EOIR or GICV_AEOIR to deactivate the interrupt. This deactivates both the virtual interrupt and the
corresponding physical interrupt, provided that both of the following conditions are true:

• the GICV_CTLR.EOImode bit is set to 0

• the GICH_LRn.HW bit is set to 1.

Alternatively, if the GICV_CTLR.EOImode bit is set to 1, the virtual machine writes to the GICV_DIR
register to deactivate the interrupt.

If the GICH_LRn.HW bit is set to 0, the hypervisor must deactivate the physical interrupt itself. ARM
recommends one of the following methods for deactivating physical SGIs that are routed to a virtual machine:

• the hypervisor deactivates the SGI by writing to the GICC_DIR register after the virtual machine
writes to GICC_EOIR

• the hypervisor uses an EOI maintenance interrupt to write to the GICC_DIR register after the virtual
machine writes to GICV_EOIR, see Maintenance interrupts on page 5-164 for more information.

5.2.3 Acknowledgement and completion of virtual interrupts

This section describes the relationship between use of the GIC virtual CPU interface registers and the GIC virtual
interface control registers. See The virtual CPU interface on page 5-178 for more information about the virtual CPU
interface.

To ensure system correctness when handling virtual interrupts, one of the following conditions must be true:

• All Group 0 interrupts must have a higher priority than any Group 1 interrupt. That is, there is no overlap in
the priorities allocated to Group 0 and Group 1 interrupts.

• The GICV_CTLR.AckCtl bit must be set to 0.

These conditions apply, also, to physical interrupts and the GICC_CTLR.AckCtl bit, see The effect of interrupt
grouping on interrupt acknowledgement on page 3-50.

Note
 ARM deprecates the use of GICC_CTLR.AckCtl and GICV_CTLR.AckCtl, and strongly recommends using a
software model where GICC_CTLR.AckCtl and GICV_CTLR.AckCtl are set to 0.

In GICv2, ARM recommends that separate registers are used to manage Group 0 and Group 1 interrupts:
• GICV_IAR, GICV_EOIR, and GICV_HPPIR for Group 0 interrupts
• GICV_AIAR, GICV_AEOIR, and GICV_AHPPIR for Group 1 interrupts.
5-162 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

5 GIC Support for Virtualization
5.2 Managing the GIC virtual CPU interface
The operation of these registers is:

GICV_IAR and GICV_AIAR

The virtual machine reads GICV_IAR or GICV_AIAR to acknowledge an interrupt. A spurious
interrupt ID is returned when:
• there is no interrupt to acknowledge
• a higher priority interrupt is ready to be acknowledged in the other group.

The normal GIC rule that interrupts must complete in the order that they are acknowledged on a
CPU interface applies to both the physical and virtual CPU interfaces.

GICV_EOIR and GICV_AEOIR

The EOI request must write the Interrupt ID and CPUID values read when the interrupt was
acknowledged. A write to the appropriate register, GICV_EOIR or GICV_AEOIR clears the
preemption bit associated with the highest priority active interrupt in the Active Priorities Register,
GICH_APR:

• When the highest priority active interrupt is a Group 0 interrupt, writing the appropriate value
read from GICV_IAR to GICV_EOIR:

— clears the preemption bit in GICH_APR

— if GICV_CTLR.EOImode is cleared to 0, removes the active state in the
corresponding List register

— if GICV_CTLR.EOImode is cleared to 0 and the GICH_LRn.HW bit is set to 1,
deactivates the corresponding physical interrupt in the Distributor

When the highest priority active interrupt is a Group 0 interrupt, the effect of writing to
GICV_AEOIR is UNPREDICTABLE.

• When the highest priority active interrupt is a Group 1 interrupt, writing the appropriate value
read from GICV_AIAR to GICV_AEOIR:

— clears the preemption bit in GICH_APR, and

— if GICV_CTLR.EOImode is cleared to 0, removes the active state in the
corresponding List register

— if GICV_CTLR.EOImode is cleared to 0 and the GICH_LRn.HW bit ==1, deactivates
the corresponding physical interrupt in the Distributor

When the highest priority active interrupt is a Group 1 interrupt, the effect of writing to
GICV_EOIR is UNPREDICTABLE.

Table 4-37 on page 4-139 shows how GICV_AEOIR is affected by GICV_CTLR.AckCtl.

GICV_HPPIR and GICV_AHPPIR

For the virtual CPU interface:

• a read of GICV_HPPIR returns the Group 0 pending interrupt with the highest priority

• a read of GICV_AHPPIR returns the Group 1 pending interrupt with the highest priority.

Table 4-42 on page 4-144 shows how GICV_HPPIR is affected by GICV_CTLR.AckCtl.

The hypervisor uses the GICC_CTLR.EOImode bit to separate priority drop in the physical CPU interface and
interrupt deactivation in the Distributor. The hypervisor can use GICC_DIR to deactivate interrupts, to retire them
from the Distributor. The GICC_DIR is used to deactivate hardware interrupts in certain cases, and usually the
GICC_DIR operation is required for deactivating SGIs:
• in the SGI N-N handling model
• where a hypervisor-generated interrupt exists to support a virtual device.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 5-163
ID072613 Non-Confidential

5 GIC Support for Virtualization
5.2 Managing the GIC virtual CPU interface
A virtual machine can deactivate interrupts in the following ways:

GICV_CTLR.EOImode == 0

The GIC deactivates hardware interrupts directly, that is, writing to GICV_EOIR drops the priority
of an interrupt and deactivates it simultaneously. The GICH_LRn.HW bit indicates whether an
interrupt is related to hardware or software, and therefore whether to forward the deactivate to the
Distributor.

See List Registers, GICH_LRn on page 5-176 for more information.

GICV_CTLR.EOImode == 1

Writing to GICV_EOIR performs priority drop operation and writing to GICV_DIR performs the
deactivate interrupt operation.

Note
 • The limited context information available when a hypervisor handles a maintenance interrupt

means that, if a hypervisor maintains more than one active interrupt in memory, instead of in
the List registers, it must also trap virtual machine accesses to GICV_DIR, so that it can
deactivate interrupts for the virtual machine.
ARM recommends that, as far as possible, the hypervisor manages active interrupts for the
current virtual machine using the List registers.

• The GIC architecture requires that writes to GICV_EOIR are ordered so that a write to
GICV_EOIR always refers to the same interrupt as the most recent read of GICV_IAR.
However, there is no requirement for writes to GICV_DIR to deactivate interrupts in any
particular order.

5.2.4 GIC virtual interface control interface requirements

The following cases are considered software programming errors and result in UNPREDICTABLE behavior:

• Having two or more copies of the same interrupt in the List registers.

• Having two or more interrupts with the same PhysicalID on one virtual CPU interface. This includes having
interrupts with the same PhysicalID that correspond to a physical SPI.

• Having a hardware interrupt in active state or in pending state in the List registers if the Distributor does not
have the corresponding physical interrupt in either the active state or the active and pending state.

• If GICV_CTLR.EOImode is set to 0, then either:

— having an active interrupt in the List registers with a priority that is not set in the corresponding Active
Priorities register

— having two interrupts in the List registers in the active state with the same preemption priority.

• Writing an EOI request with the InterruptID of an interrupt that the List registers show as being in the pending
state.

5.2.5 Maintenance interrupts

Maintenance interrupts can signal key events in the operation of a GIC that implements the Virtualization
Extensions. Typically, these events are processed by the hypervisor.

Note
 • Maintenance interrupts are generated only when the global interrupt enable bit, GICH_HCR.En, is set to 1.
• Maintenance interrupt routing is outside the scope of this specification.

Maintenance interrupts are level-sensitive interrupts. Configuration bits in the GICH_HCR can be set to 1 to enable
maintenance interrupt generation when:
• Group 0 virtual interrupts are enabled.
5-164 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

5 GIC Support for Virtualization
5.2 Managing the GIC virtual CPU interface
• Group 1 virtual interrupts are enabled.
• Group 0 virtual interrupts are disabled.
• Group 1 virtual interrupts are disabled.
• There are no pending interrupts in the List registers.
• At least one EOI request occurs with no valid List register entry for the corresponding interrupt.
• There are no valid entries, or only one valid entry, in the List registers. This is an underflow condition.
• At least one List register entry has received an EOI request.

See Maintenance Interrupt Status Register, GICH_MISR on page 5-172 for more information about the control and
status reporting of maintenance interrupts.

5.2.6 Software-generated interrupts

The following types of software-generated interrupt exist:

Hypervisor-generated interrupts

A hypervisor can generate virtual interrupts that do not have a corresponding physical interrupt, by
creating an entry in the List registers with the GICH_LRn.HW bit cleared to 0. The hypervisor can
control how the interrupt appears to a virtual machine reading the GICV_IAR or GICV_AIAR
register to acknowledge the interrupt, by presenting the interrupt as:
• an SGI, with a CPUID value provided in addition to the interrupt ID
• a PPI or SPI, with the CPUID value set to 0.

The hypervisor can virtualize the CPUID value, but it must be consistent with the type of interrupt
indicated by the GICH_LRn.VirtualID field. When the EOI notification is sent to the virtual CPU
interface, only the List registers are affected, and no notification is sent to the Distributor. See List
Registers, GICH_LRn on page 5-176 for more information.

Distributor-generated interrupts

Because the hardware interrupt deactivation mechanism does not support SGIs, the hypervisor must
virtualize SGIs originating from the Distributor in the same way as hypervisor-generated interrupts.
The hypervisor can virtualize the GICH_LRn.CPUID field, because this field is not required to be
the same as that of the original SGI. See Completion of virtualized physical interrupts on page 5-161
for more information about deactivating virtualized SGIs.

5.2.7 GIC Virtualization Extensions register mapping

In a GIC implementation that includes the Virtualization Extensions, the GIC provides a virtual CPU interface, with
a complete set of virtual interface control registers, for each processor in the system. The GIC must make these
virtual interface control registers accessible in the following ways:

Redirection through a common base address

The memory map includes a common base address for the virtual interface control registers. Each
processor in the system can access its own GIC virtual interface control registers through this base
address. The CPUID of the processor requesting access redirects the access to the GIC virtual
interface control registers for that processor.

Processor-specific base addresses

In addition to the common base address, the memory map contains, for each processor in the system,
a processor-specific base address for the GIC virtual interface control registers. Any processor can
use these addresses to access its own GIC virtual interface control registers, or to access the GIC
virtual interface control registers of any other processor in the system.

Figure 5-2 on page 5-166 shows this implementation.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 5-165
ID072613 Non-Confidential

5 GIC Support for Virtualization
5.2 Managing the GIC virtual CPU interface
Figure 5-2 GIC virtual interface control register mappings

GIC virtual interface
control registers

Processor 0
base address

Address map

Processor 1

Processor 2

Processor 3 Processor 3 registers

Processor 2 registers

Processor 1 registers

Processor 0 registers

Processor 1
base address

Processor 2
base address

Processor 3
base address

† Use of the processor-specific base addresses is shown in full only for accesses by processor 0

Common
base address

CPUID-based
redirection

Processor 0†
5-166 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

5 GIC Support for Virtualization
5.3 GIC virtual interface control registers
5.3 GIC virtual interface control registers
The GIC virtual interface control registers are management registers. Configuration software on the processor must
ensure they are accessible only by a hypervisor, or similar software.

Note
 All GIC registers are 32-bits wide. Reserved register addresses are RAZ/WI.

Table 5-1 shows the register map for the GIC virtual interface control registers.

Table 5-1 GIC virtual interface control register map

Offset Name Type Reset Description

0x00 GICH_HCR RW 0x00000000 Hypervisor Control Register

0x04 GICH_VTR RO IMPLEMENTATION DEFINED VGIC Type Register

0x08 GICH_VMCR RW IMPLEMENTATION DEFINED Virtual Machine Control Register

0x0C - - - Reserved

0x10 GICH_MISR RO 0x00000000 Maintenance Interrupt Status Register

0x14-0x1C - - - Reserved

0x20 GICH_EISR0 RO 0x00000000 End of Interrupt Status Registers 0 and 1, see GICH_EISRn

0x24 GICH_EISR1 RO 0x00000000

0x28-0x2C - - - Reserved

0x30 GICH_ELSR0 RO IMPLEMENTATION DEFINEDa Empty List Register Status Registers 0 and 1, see
GICH_ELRSRn

0x34 GICH_ELSR1 RO IMPLEMENTATION DEFINEDa

0x38-0xEC - - - Reserved

0xF0 GICH_APR RW 0x00000000 Active Priorities Register

0xF4-0xFC - - RAZ/WI Reserved for GICH_APR1-GICH_APR3

0x100 GICH_LR0 RW 0x00000000 List Registers 0-63, see GICH_LRn

... - - -

0x1FC GICH_LR63 RW 0x00000000

a. Each bit that has a corresponding List register resets to 1, meaning that the reset value of the register depends on the number of List registers
implemented.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 5-167
ID072613 Non-Confidential

5 GIC Support for Virtualization
5.3 GIC virtual interface control registers
5.3.1 Hypervisor Control Register, GICH_HCR

The GICH_HCR characteristics are:

Purpose This register contains control bits for the virtual CPU interface.

Usage constraints The GICH_HCR.En bit must be set to 1 for any virtual or maintenance interrupt to be
asserted.

Configurations This register is part of the GIC Virtualization Extensions.

Attributes See the register summary in Table 5-1 on page 5-167.

Figure 5-3 shows the GICH_HCR bit assignments.

Figure 5-3 GICH_HCR bit assignments

Table 5-2 shows the GICH_HCR bit assignments.

EOICount

31 27 26 5 0

Reserved

1234678

UIE
LRENPIE

NPIE
VGrp0EIE
VGrp0DIE

En

VGrp1DIE
VGrp1EIE

Table 5-2 GICH_HCR bit assignments

Bit Name Description

[31:27] EOICount Counts the number of EOIs received that do not have a corresponding entry in the List registers. The
virtual CPU interface increments this field automatically when a matching EOI is received. EOIs that
do not clear a bit in the Active Priorities register, GICH_APR do not cause an increment. Although not
possible under correct operation, if an EOI occurs when the value of this field is 31, this field wraps to 0.
The maintenance interrupt is asserted whenever this field is non-zero and the LRENPIE bit is set to 1.

[26:8] - Reserved.

[7] VGrp1DIE VM Disable Group 1 Interrupt Enable.
Enables the signaling of a maintenance interrupt while signaling of Group 1 interrupts from the virtual
CPU interface to the connected virtual machine is disabled:
0 Maintenance interrupt disabled.
1 Maintenance interrupt signaled while GICV_CTLR.EnableGrp1 is set to 0.

[6] VGrp1EIE VM Enable Group 1 Interrupt Enable.
Enables the signaling of a maintenance interrupt while signaling of Group 1 interrupts from the virtual
CPU interface to the connected virtual machine is enabled:
0 Maintenance interrupt disabled.
1 Maintenance interrupt signaled while GICV_CTLR.EnableGrp1 is set to 1.
5-168 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

5 GIC Support for Virtualization
5.3 GIC virtual interface control registers
The VGrp1DIE, VGrp1EIE, VGrp0DIE, and VGrp0EIE bits enable the hypervisor to track the virtual CPU
interfaces that are enabled. The hypervisor can then route interrupts that have more than one target correctly and
efficiently, without having to read the virtual CPU interface status.

See Maintenance interrupts on page 5-164 and Maintenance Interrupt Status Register, GICH_MISR on page 5-172
for more information.

[5] VGrp0DIE VM Disable Group 0 Interrupt Enable.
Enables the signaling of a maintenance interrupt while signaling of Group 0 interrupts from the virtual
CPU interface to the connected virtual machine is disabled:
0 Maintenance interrupt disabled.
1 Maintenance interrupt signaled while GICV_CTLR.EnableGrp0 is set to 0.

[4] VGrp0EIE VM Disable Group 0 Interrupt Enable.
Enables the signaling of a maintenance interrupt while signaling of Group 0 interrupts from the virtual
CPU interface to the connected virtual machine is enabled:
0 Maintenance interrupt disabled.
1 Maintenance interrupt signaled while GICV_CTLR.EnableGrp0 is set to 1.

[3] NPIE No Pending Interrupt Enable. Enables the signaling of a maintenance interrupt while no pending
interrupts are present in the List registers;
0 Maintenance interrupt disabled.
1 Maintenance interrupt signaled while the List registers contain no interrupts in the

pending state.

[2] LRENPIE List Register Entry Not Present Interrupt Enable. Enables the signaling of a maintenance interrupt while
the virtual CPU interface does not have a corresponding valid List register entry for an EOI request:
0 Maintenance interrupt disabled.
1 A maintenance interrupt is asserted while the EOICount field is not 0.

[1] UIE Underflow Interrupt Enable. Enables the signaling of a maintenance interrupt when the List registers
are empty, or hold only one valid entry:
0 Maintenance interrupt disabled.
1 A maintenance interrupt is asserted if none, or only one, of the List register entries is

marked as a valid interrupt.

[0] En Enable. Global enable bit for the virtual CPU interface:
0 Virtual CPU interface operation disabled.
1 Virtual CPU interface operation enabled.
When this field is set to 0:
• the virtual CPU interface does not signal any maintenance interrupts
• the virtual CPU interface does not signal any virtual interrupts
• a read of GICV_IAR or GICV_AIAR returns a spurious interrupt ID.

Table 5-2 GICH_HCR bit assignments (continued)

Bit Name Description
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 5-169
ID072613 Non-Confidential

5 GIC Support for Virtualization
5.3 GIC virtual interface control registers
5.3.2 VGIC Type Register, GICH_VTR

The GICH_VTR characteristics are:

Purpose This is a read-only register that provides the following information about the
implementation of the GIC Virtualization Extensions:
• number of priority levels supported
• number of preemption levels supported
• number of implemented List registers.

Usage constraints There are no usage constraints.

Configurations This register is part of the GIC Virtualization Extensions.

Attributes See the register summary in Table 5-1 on page 5-167.

Figure 5-4 shows the GICH_VTR bit assignments.

Figure 5-4 GICH_VTR bit assignments

Table 5-3 shows the GICH_VTR bit assignments.

PRIbits

31 29 28 26 25 6 5 0

PREbits Reserved ListRegs

Table 5-3 GICH_VTR bit assignments

Bit Name Description

[31:29] PRIbits The number of priority bits implemented, minus one. In GICv2, the only valid value is 5 bits:
100 32 priority levels.

[28:26] PREbits The number of preemption bits implemented, minus one. In GICv2, the only valid value is 5
bits:
100 32 preemption levels

[25:6] - Reserved, RAZ

[5:0] ListRegs The number of implemented List registers, minus one. For example, a value of 0b111111
indicates that the maximum 64 List registers are implemented.
5-170 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

5 GIC Support for Virtualization
5.3 GIC virtual interface control registers
5.3.3 Virtual Machine Control Register, GICH_VMCR

The GICH_VMCR characteristics are:

Purpose Enables the hypervisor to save and restore the virtual machine view of the GIC state.

Usage constraints There are no usage constraints.

Configurations This register is part of the GIC Virtualization Extensions.

Attributes See the register summary in Table 5-1 on page 5-167.

Figure 5-5 shows the GICH_VMCR bit assignments.

Figure 5-5 GICH_VMCR bit assignments

Table 5-2 on page 5-168 shows the GICH_VMCR bit assignments.

The GICH_VMCR is a control register that contains read and write aliases of architecture state in the virtual
machine view, enabling the hypervisor to save and restore this state with a single read or write, without accessing
the GIC virtual CPU interface registers individually.

ReservedVMBPVMPriMask

31 27 26 9 5 0

Reserved

24 23 21 20 18 17 10 8 4 23 1

VMGrp0En
VMGrp1En

Reserved VMABP VEM VMCBPR

VMAckCtl
VMFIQEn

Table 5-4 GICH_VMCR bit assignments

Bit Name Description

[31:27] VMPriMask Alias of GICV_PMR.Priority.

[26:24] - Reserved.

[23:21] VMBP Alias of GICV_BPR.Binary point.
On reset, this bit is set to the minimum supported value of GICV_BPR.

[20:18] VMABPa

a. On reset, this is set to the minimum Group 1 binary point value, that is, the minimum of VMBP+1,
saturated to 7.

Alias of GICV_ABPR.Binary point.

[17:10] - Reserved.

[9] VEM Alias of GICV_CTLR.EOImode.

[8:5] - Reserved.

[4] VMCBPR Alias of GICV_CTLR.CBPR.

[3] VMFIQEn Alias of GICV_CTLR.FIQEn.

[2] VMAckCtl Alias of GICV_CTLR.AckCtl.

[1] VMGrp1En Alias of GICV_CTLR.EnableGrp1.

[0] VMGrp0En Alias of GICV_CTLR.EnableGrp0.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 5-171
ID072613 Non-Confidential

5 GIC Support for Virtualization
5.3 GIC virtual interface control registers
5.3.4 Maintenance Interrupt Status Register, GICH_MISR

The GICH_MISR characteristics are:

Purpose Indicates which maintenance interrupts are asserted.

Usage constraints A maintenance interrupt is asserted only if at least one bit is set in this register and if the
global enable bit, GICH.HCR.En, is set to 1.

Configurations This register is part of the GIC Virtualization Extensions.

Attributes See the register summary in Table 5-1 on page 5-167.

Figure 5-6 shows the GICH_MISR bit assignments.

Figure 5-6 GICH_MISR bit assignments

Table 5-5 shows the GICH_MISR bit assignments.

31 5 0

Reserved

78 4 23 1

NP
VGrp0E

VGrp1D

VGrp0D
VGrp1E

EOI
U

LRENP

6

Table 5-5 GICH_MISR bit assignments

Bit Name Description

[31:8] - Reserved.

[7] VGrp1D Disabled Group 1 maintenance interrupt. Asserted whenever GICH_HCR.VGrp1DIE
is set and GICH_VMCR.VMGrp1En==0.

[6] VGrp1E Enabled Group 1 maintenance interrupt. Asserted whenever GICH_HCR.VGrp1EIE is
set and GICH_VMCR.VMGrp1En==1.

[5] VGrp0D Disabled Group 0 maintenance interrupt. Asserted whenever GICH_HCR.VGrp0DIE
is set and GICH_VMCR.VMGrp0En==0.

[4] VGrp0E Enabled Group 0 maintenance interrupt. Asserted whenever GICH_HCR.VGrp0EIE is
set and GICH_VMCR.VMGrp0En==1.

[3] NP No Pending maintenance interrupt. Asserted whenever GICH_HCR.NPIE==1 and no
List register is in pending state.

[2] LRENP List Register Entry Not Present maintenance interrupt. Asserted whenever
GICH_HCR.LRENPIE==1 and GICH_HCR.EOICount is non-zero.

[1] U Underflow maintenance interrupt. Asserted whenever GICH_HCR.UIE is set and if
none, or only one, of the List register entries are marked as a valid interrupt, that is, if
the corresponding GICH_LRn.State bits do not equal 0x0.

[0] EOI EOI maintenance interrupt. Asserted whenever at least one List register is asserting an
EOI Interrupt. At least one bit in GICH_EISRn==1.
5-172 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

5 GIC Support for Virtualization
5.3 GIC virtual interface control registers
5.3.5 End of Interrupt Status Registers, GICH_EISR0 and GICH_EISR1

The GICH_EISR characteristics are:

Purpose When a maintenance interrupt is received, these registers help determine which List
registers have outstanding EOI interrupts that require servicing.

Usage constraints Bits corresponding to unimplemented List registers always RAZ.

Configurations These registers are part of the GIC Virtualization Extensions. The number of GICH_EISRs
depends on the number of List registers implemented. GICH_EISR0 corresponds to List
registers 0-31 and GICH_EISR1 corresponds to List registers 32-63.

Attributes See the register summary in Table 5-1 on page 5-167.

Figure 5-7 shows the GICH_EISR0 bit assignments.

Figure 5-7 GICH_EISR0 bit assignments

Table 5-6 shows the GICH_EISR0 bit assignments.

31 0

List register status bits

Table 5-6 GICH_EISR0 bit assignments

Bits Name Function

[31:0] List register EOI status bits 0-31 For each bit:
0 Corresponding List register does not have an EOI.
1 Corresponding List register has an EOI.a

See List Registers, GICH_LRn on page 5-176 for more information.

a. For any GICH_LRn, the corresponding status bit is set to 1 if (GICH_LRn.State==00 && GICH_LRnn.HW ==0 &&
GICH_LRn.EOI==1).
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 5-173
ID072613 Non-Confidential

5 GIC Support for Virtualization
5.3 GIC virtual interface control registers
5.3.6 Empty List Register Status Registers, GICH_ELRSR0 and GICH_ELRSR1

The GICH_ELRSR characteristics are:

Purpose These registers can be used to locate a usable List register when the hypervisor is delivering
an interrupt to a Guest OS.

Usage constraints Bits corresponding to unimplemented List registers always RAZ.

Configurations These registers are part of the GIC Virtualization Extensions. The number of
GICH_ELRSRs depends on the number of List registers implemented. GICH_ELRSR0
corresponds to List registers 0-31 and GICH_ELRSR1 corresponds to List registers 32-63.

Attributes See the register summary in Table 5-1 on page 5-167.

Figure 5-8 shows the GICH_ELRSR0 bit assignments.

Figure 5-8 GICH_ELRSR0 bit assignments

Table 5-7 shows the GICH_ELRSR0 bit assignments.

31 0

List register status bits

Table 5-7 GICH_ELRSR0 bit assignments

Bits Name Function

[31:0] List register status bits 0-31 For each bit:
0 The corresponding List register, if implemented, contains a valid interrupt.

Using this List register can result in overwriting a valid interrupt.
1 The corresponding List register does not contain a valid interrupt. The List

register is empty and can be used without overwriting a valid interrupt or
losing an EOI maintenance interrupt.a

See List Registers, GICH_LRn on page 5-176 for more information.

a. For any GICH_LRn, the corresponding status bit is set to 1 if (GICH_LRn.State==00 && (GICH_LRn.HW==1 || GICH_LRn.EOI==0)).
5-174 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

5 GIC Support for Virtualization
5.3 GIC virtual interface control registers
5.3.7 Active Priorities Register, GICH_APR

The GICH_APR characteristics are:

Purpose This register tracks which preemption levels are active in the virtual CPU interface, and is
used to determine the current active priority. Corresponding bits are set in this register when
an interrupt is acknowledged, based on GICH_LRn.Priority, and the least significant set bit
is cleared on EOI.

Usage constraints The bit to be set is determined by the top five bits of the interrupt priority.

Configurations This register is part of the GIC Virtualization Extensions.

Attributes See the register summary in Table 5-1 on page 5-167.

Figure 5-9 shows the GICH_APR bit assignments.

Figure 5-9 GICH_APR bit assignments

Table 5-8 shows the GICH_APR bit assignments.

Active priority bits 0-31

31 0

Table 5-8 GICH_APR bit assignments

Bit Name Description

[31:0] Active priority bits 0-31 Determines whether the corresponding preemption level is active:
0 the preemption level is not active
1 the preemption level is active.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 5-175
ID072613 Non-Confidential

5 GIC Support for Virtualization
5.3 GIC virtual interface control registers
5.3.8 List Registers, GICH_LRn

The GICH_LR characteristics are:

Purpose Provides interrupt context information for the virtual CPU interface.

Usage constraints There are no usage constraints.

Configurations These registers are part of the GIC Virtualization Extensions.

A maximum of 64 List registers can be provided. The GICH_VTR.ListRegs bit defines the
actual number implemented. All higher numbered List registers are RAZ/WI.

Any unused bits in this register are RAZ/WI.

Attributes See the register summary in Table 5-1 on page 5-167.

Figure 5-10 shows the GICH_LR bit assignments.

Figure 5-10 GICH_LR bit assignments

Table 5-9 shows the GICH_LR bit assignments.

31 30 29 28 27 20 19 10 9 0

State Priority PhysicalIDa VirtualID

Grp1
HW

Reserved

2223

a These bits have different meaning when GICH_LRn.HW==0.

Table 5-9 GICH_LR bit assignments

Bit Name Description

[31] HW Indicates whether this virtual interrupt is a hardware interrupt, meaning that it corresponds to a physical
interrupt. Deactivation of the virtual interrupt also causes the deactivation of the physical interrupt with the
ID that the PhysicalID field indicates.
0 The interrupt is triggered entirely in software. No notification is sent to the Distributor when

the virtual interrupt is deactivated.
1 A hardware interrupt. A deactivate interrupt request is sent to the Distributor when the

virtual interrupt is deactivated, using bits [19:10], the PhysicalID, to indicate the physical
interrupt ID.
If GICV_CTLR.EOImode == 0, this request corresponds to a write to the GICV_EOIR or
GICV_AEOIR, otherwise it corresponds to a write to the GICV_DIR.

[30] Grp1 Indicates whether this virtual interrupt is a Group 1 virtual interrupt.
0 This is a Group 0 virtual interrupt. GICV_CTLR.FIQEn determines whether it is signaled

as a virtual IRQ or as a virtual FIQ, and GICV_CTLR.EnableGrp0 enables signaling of this
interrupt to the virtual machine.

1 This is a Group 1 virtual interrupt, signaled as a virtual IRQ. GICV_CTLR.EnableGrp1
enables the signaling of this interrupt to the virtual machine.

Note
 The GICV_CTLR.CBPR bit controls whether GICV_BPR or GICV_ABPR is used to

determine if a pending Group 1 interrupt has sufficient priority to preempt current
execution.
5-176 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

5 GIC Support for Virtualization
5.3 GIC virtual interface control registers
[29:28] State The state of the interrupt. This has one of the following values:
00 invalid
01 pending
10 active
11 pending and active.
The GIC updates these state bits as virtual interrupts proceed through the interrupt life cycle. Entries in the
invalid state are ignored, except for the purpose of generating virtual maintenance interrupts.

Note
 For hardware interrupts, the pending and active state is held in the physical Distributor rather than the virtual
CPU interface. A hypervisor must only use the pending and active state for software originated interrupts,
which are typically associated with virtual devices, or SGIs.

[27:23] Priority The priority of this interrupt.

[22:20] - Reserved.

[19:10] PhysicalID The function of this bit depends on the value of the GICH_LR.HW bit, as follows.
0 When GICH_LR.HW is set to 0, bits [19:10] have the following meanings:

[19] EOI
Indicates whether this interrupt triggers an EOI maintenance interrupt.
0 No maintenance interrupt is asserted.
1 A maintenance interrupt is asserted to signal EOI when the interrupt

state is invalid, which typically occurs when the interrupt is
deactivated.

[18:13] Reserved, SBZ
[12:10] CPUID

If the interrupt has the VirtualID for an SGI, that is, 0-15, this field shows the
requesting CPU ID. This appears in the relevant field of the VM Interrupt
Acknowledge register, GICV_IAR or GICV_AIAR.
Otherwise, this field must be set to 0.

1 When GICH_LR.HW is set to 1, this field indicates the physical interrupt ID that the
hypervisor forwards to the Distributor.

Note
 When used to indicate the physical interrupt ID, this field is only required to implement

enough bits to hold a valid value for the configuration used. Any unused higher order bits
are RAZ/WI.

If the value of PhysicalID is 0-15, or 1020-1023, behavior is UNPREDICTABLE. If the value
of PhysicalID is 16-31, this field applies to the PPI associated with the same physical
CPUID as the virtual CPU interface requesting the deactivation.

[9:0] VirtualID This ID is returned to the Guest OS when the interrupt is acknowledged through the VM Interrupt
Acknowledge register, GICV_IAR.
Each valid interrupt stored in the List registers must have a unique VirtualID for that virtual CPU interface.
If the value of VirtualID is 1020-1023, behavior is UNPREDICTABLE.

Table 5-9 GICH_LR bit assignments (continued)

Bit Name Description
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 5-177
ID072613 Non-Confidential

5 GIC Support for Virtualization
5.4 The virtual CPU interface
5.4 The virtual CPU interface
A GIC virtual CPU interface signals virtual interrupts to a connected processor, subject to the normal GIC handling
and prioritization rules. The GIC virtual CPU interface registers have the same general format as the GIC physical
CPU interface registers and expected behavior is that a virtual machine cannot distinguish between them. The
virtual interface control registers control virtual CPU interface operation, and in particular, the virtual CPU interface
uses the contents of the List registers to determine when to signal virtual interrupts. When a processor accesses the
virtual CPU interface the List registers are updated.

Note
 • Virtual interrupts are always handled through the virtual CPU interfaces.

• On the connected processor, if the processor is in a Non-secure PL1 or PL0 mode, virtual interrupts are
signaled to the current virtual machine.

• In addition, a virtual machine can receive virtual IRQs and virtual FIQs signaled directly by the hypervisor.
These exceptions are outside the scope of this specification. A virtual machine cannot distinguish:

— A virtual exception signaled by the GIC from a corresponding virtual exception signaled directly by
the hypervisor.

— A virtual exception from the corresponding physical exception.

• A virtual CPU interface does not require power management support, and therefore GICV_CTLR does not
implement the IRQBypDisGrp1, FIQBypDisGrp1, IRQBypDisGrp0, and FIQBypDisGrp0 bits that are
supported by GICC_CTLR

5.4.1 Enabling and disabling virtual interrupts

The GICV_CTLR EnableGrp1 and EnableGrp0 bits control the signaling of Group 0 and Group 1 virtual interrupts
to the connected virtual machine. When virtual interrupt signaling is disabled, the virtual CPU interface returns a
spurious interrupt ID to any corresponding GICV_IAR or GICV_AIAR access. It is IMPLEMENTATION DEFINED
whether disabling virtual interrupt signaling has the same effect on GICV_HPPIR and GICV_AHPPIR

When enabling and disabling virtual interrupt generation, it might be necessary to reroute one or more interrupts,
see Maintenance interrupts on page 5-164 for more information about associated events.
5-178 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

5 GIC Support for Virtualization
5.5 GIC virtual CPU interface registers
5.5 GIC virtual CPU interface registers
These registers provide the virtual CPU interface accessed by the virtual machine. Typically, a virtual machine is
unaware of any difference between virtual interrupts and physical interrupts. This means the programmers’ model
for handling virtual interrupts must be identical to that for handling physical interrupts. In general, these registers
have the same format as the GIC physical CPU interface registers, but they operate on the interrupt view defined
primarily by the List registers.

These registers are memory-mapped, with defined offsets from an IMPLEMENTATION DEFINED GICV_* register base
address.

Note
 The offset of each GICV_* register is the same as the offset of the corresponding register for the physical CPU
interface. For example, GICV_PMR is at offset 0x0004 from the GICV_* register base address, and GICC_PMR is
at the same offset from the GICC_* register base address.

This means that:

• the hypervisor can use the stage 2 address translations to map the virtual CPU interface accesses to the correct
physical addresses.

• software, whether accessing the registers of a physical CPU interface or of a virtual CPU interface, uses the
same register addresses.

Table 5-10 shows the register map for the GIC virtual CPU interface registers.

Table 5-10 GIC virtual CPU interface register map

Offset Name Type Reset Description

0x0000 GICV_CTLR RW 0x00000000 Virtual Machine Control Register

0x0004 GICV_PMR RW 0x00000000 VM Priority Mask Register

0x0008 GICV_BPR RW 0x00000002 VM Binary Point Register

0x000C GICV_IAR RO 0x000003FF VM Interrupt Acknowledge Register

0x0010 GICV_EOIR WO - VM End of Interrupt Register

0x0014 GICV_RPR RO 0x000000FF VM Running Priority Register

0x0018 GICV_HPPIR RO 0x000003FF VM Highest Priority Pending Interrupt Register

0x001C GICV_ABPR RW 0x00000003 VM Aliased Binary Point Register

0x0020 GICV_AIAR RO 0x000003FF VM Aliased Interrupt Acknowledge Register

0x0024 GICV_AEOIR WO - VM Aliased End of Interrupt Register

0x0028 GICV_AHPPIR RO 0x000003FF VM Aliased Highest Priority Pending Interrupt
Register

0x002C-0x003C - - - Reserved

0x0040-0x00CC - - - IMPLEMENTATION DEFINED

0x00D0-0x00DC GICV_APRn RW IMPLEMENTATION DEFINED VM Active Priorities Registers

0x00E0-0x00EC - - RAZ/WI Reserved for second set of Active Priorities Registers,
see the Note in the GICV_APRn description.

0x00F0-0x00F8 - - - Reserved
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 5-179
ID072613 Non-Confidential

5 GIC Support for Virtualization
5.5 GIC virtual CPU interface registers
5.5.1 Virtual Machine Control Register, GICV_CTLR

The GICV_CTLR characteristics are:

Purpose Enables and disables Group 0 and Group 1 virtual interrupts.

Note
 GICH_LRn.Grp1 determines whether a virtual interrupt is Group 0 or Group 1.

This register corresponds to the GICC_CTLR in the physical CPU interface.

Usage constraints There are no usage constraints.

Configurations This register is part of the GIC Virtualization Extensions.

Attributes See the register summary in Table 5-10 on page 5-179.

Figure 5-11 shows the GICV_CTLR bit assignments:

Figure 5-11 GICV_CTLR bit assignments

Table 5-11 on page 5-181 shows the GICV_CTLR bit assignments.

0x00FC GICV_IIDR RO IMPLEMENTATION DEFINED VM CPU Interface Identification Register

0x00FC-0x0FFC - - - Reserved

0x1000 GICV_DIR WO - VM Deactivate Interrupt Register

0x1004-0x1FFC - - - Reserved

Table 5-10 GIC virtual CPU interface register map (continued)

Offset Name Type Reset Description

31 1 0

Reserved

AckCtl

4

CBPR
FIQEn

Reserved
EOImode

58910

EnableGrp1
EnableGrp0

3 2
5-180 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

5 GIC Support for Virtualization
5.5 GIC virtual CPU interface registers
Table 5-11 GICV_CTLR bit assignments

Bits Name Function

[31:10] - Reserved.

[9] EOImode Controls the behavior associated with the GICV_EOIR, GICV_AEOIR, and GICV_DIR registers:
0 GICV_EOIR and GICV_AEOIR perform priority drop and deactivate interrupt operations

simultaneously. GICV_DIR is UNPREDICTABLE.
When it has completed processing the interrupt, the virtual machine writes to GICV_EOIR
or GICV_AEOIR, deactivating the interrupt. The write:
• updates the List registers
• causes the virtual CPU interface to signal the interrupt completion to the physical

Distributor.
1 GICV_EOIR and GICV_AEOIR perform priority drop operation only. GICV_DIR performs

deactivate interrupt operation only.
At some point during its interrupt processing, the virtual machine writes to GICV_EOIR or
GICV_AEOIR. This write drops the priority of the virtual interrupt, by updating its entry in
the List registers.
When it has completed processing the interrupt, the virtual machine writes to GICV_DIR.
This write deactivates the virtual interrupt and:
• updates the List registers
• causes the virtual CPU interface to signal the interrupt completion to the physical

Distributor.

[8:5] - Reserved

[4] CBPR Controls whether the GICV_BPR controls both Group 0 and Group 1 virtual interrupts.
0 GICV_BPR controls Group 0 virtual interrupts, and GICV_ABPR controls Group 1 virtual

interrupts
1 GICV_BPR controls Group 0 and Group 1 virtual interrupts.
See The effect of interrupt grouping on priority grouping on page 3-57 for more information about how
GICC_CTLR.CBPR affects accesses to GICC_BPR and GICC_ABPR.

[3] FIQEn Controls whether interrupts marked as Group 0 are presented as virtual FIQs:
0 Group 0 interrupts are presented as virtual IRQs
1 Group 0 interrupts are presented as virtual FIQs.

[2] AckCtl ARM deprecates use of this bit. ARM strongly recommends that software is written to operate with this bit
always set to 0.
Controls whether a read of the GICV_IAR, when the highest priority pending interrupt is a Group 1 interrupt,
causes the CPU interface to acknowledge the interrupt.
0 If the highest priority pending interrupt is a Group 1 interrupt, a read of the GICV_IAR

returns an Interrupt ID of 1022. The read does not acknowledge the interrupt, and the
pending status of the interrupt is unchanged.

1 If the highest priority pending interrupt is a Group 1 interrupt, a read of the GICV_IAR
returns the Interrupt ID of the Group 1 interrupt. The read acknowledges the interrupt, and
the status of the interrupt becomes active, or active and pending.

Note
 Only hypervisor-generated interrupts can be active and pending.

[1] EnableGrp1 Enables the signaling of Group 1 virtual interrupts by the virtual CPU interface to the virtual machine:
0 Signaling of Group 1 interrupts disabled.
1 Signaling of Group 1 interrupts enabled.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 5-181
ID072613 Non-Confidential

5 GIC Support for Virtualization
5.5 GIC virtual CPU interface registers
[0] EnableGrp0 Enables the signaling of Group 0 virtual interrupts by the virtual CPU interface to the virtual machine:
0 Signaling of Group 0 interrupts disabled.
1 Signaling of Group 0 interrupts enabled.

Table 5-11 GICV_CTLR bit assignments (continued)

Bits Name Function
5-182 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

5 GIC Support for Virtualization
5.5 GIC virtual CPU interface registers
5.5.2 VM Priority Mask Register, GICV_PMR

The GICV_PMR characteristics are:

Purpose Provides a virtual interrupt priority filter. Only virtual interrupts with higher priority than
the value in this register can be signaled to the processor.

Note
 Higher priority corresponds to a lower Priority field value.

The Priority field of this register is aliased to the VMPriMask field in GICH_VMCR, to
enable the state to be switched easily between virtual machines during context-switching.

This register corresponds to the GICC_PMR in the physical CPU interface.

Usage constraints There are no usage constraints.

Configurations This register is part of the GIC Virtualization Extensions.

Attributes See the register summary in Table 5-10 on page 5-179.

Figure 5-12 shows the GICV_PMR bit assignments.

Figure 5-12 GICV_PMR bit assignments

GICV_PMR is similar to GICC_PMR, the corresponding register in the GIC physical CPU interface, except that
bits [2:0] are reserved. This is because the virtual CPU interface supports fewer priority values than the maximum
number of values that the physical CPU interface can support. See the GICC_PMR description for more information
about the bit assignments.

Priority

31 7 08

Reserved

Reserved

3 2
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 5-183
ID072613 Non-Confidential

5 GIC Support for Virtualization
5.5 GIC virtual CPU interface registers
5.5.3 VM Binary Point Register, GICV_BPR

The GICV_BPR characteristics are:

Purpose The register defines the point at which the priority value fields for the virtual interrupts split
into two parts, the group priority field and the subpriority field. The group priority field is
used to determine interrupt preemption. For more information see Preemption on page 3-45
and Priority grouping on page 3-45.

This register is used to determine the priority grouping for Group 0 interrupts and, if the
GICV_CTLR.CBPR bit is 1, for Group 1 interrupts also. This register corresponds to the
GICC_BPR in the physical CPU interface.

Usage constraints The minimum binary point value is determined by the value of GICH_VTR.PREbits. A GIC
that includes the Virtualization Extensions supports a maximum of 32 preemption levels,
corresponding to a minimum binary point value of 2. An attempt to program the binary point
field to a value less than the minimum value sets the field to the minimum value. On a reset,
the binary point field is set to the minimum supported value.

Configurations This register is part of the GIC Virtualization Extensions.

Attributes See the register summary in Table 5-10 on page 5-179.

Figure 5-13 shows the GICV_BPR bit assignments.

Figure 5-13 GICV_BPR bit assignments

The GICV_BPR bit assignments are the same as assignments for the GICC_BPR, the corresponding register in the
physical CPU interface. See the GICC_BPR description for more information.

The Binary point field of this register is aliased to the GICH_VMCR.VMBP field, to enable the state to be switched
easily between virtual machines during context-switching.

31 2 0

Reserved

3

Binary
point
5-184 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

5 GIC Support for Virtualization
5.5 GIC virtual CPU interface registers
5.5.4 VM Interrupt Acknowledge Register, GICV_IAR

Purpose The virtual machine reads this register to obtain the interrupt ID of the signaled virtual
interrupt. This read acts as an acknowledge for the interrupt.

This register corresponds to the GICC_IAR in the physical CPU interface.

Usage constraints There are no usage constraints.

Configurations This register is part of the GIC Virtualization Extensions.

Attributes See the register summary in Table 5-10 on page 5-179.

Figure 5-14 shows the GICV_IAR bit assignments.

Figure 5-14 GICV_IAR bit assignments

The GICV_IAR bit assignments are the same as the bit assignments for the GICC_IAR, the corresponding register
in the physical CPU interface. See the GICC_IAR description for more information.

When the processor reads this register, the virtual CPU interface acknowledges the highest priority pending virtual
interrupt and sets the state in the corresponding List register to active. The appropriate bit in the Active Priorities
register, GICH_APR is set to 1.

If the GICH_LRn.HW bit is set to 0, indicating that the interrupt is triggered in software, then bits [12:10] of the
GICH_LRn, that indicate the CPU ID, are returned in the GICV_IAR.CPUID field. Otherwise GICV_IAR.CPUID
field reads as zero.

Table 5-12 shows all possible GICV_IAR reads for a virtual CPU interface.

31 9 0

Reserved

10

Interrupt ID

1213

CPUID

Table 5-12 Effect of reads of GICV_IAR

Interrupt status GICV_CTLR.AckCtl Returned interrupt ID

Highest priority pending interrupta is Group 1 1 ID of Non-secure interrupt

0 Interrupt ID 1022

Highest priority pending interrupta is Group 0 x ID of Secure interrupt
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 5-185
ID072613 Non-Confidential

5 GIC Support for Virtualization
5.5 GIC virtual CPU interface registers
No pending interruptsa x Interrupt ID 1023

Interrupt signaling by virtual CPU interface disabled x Interrupt ID 1023

a. Of sufficient priority to be signaled to the processor with the virtual CPU interface enabled and the
GICH_HCR.En bit set to 1

Table 5-12 Effect of reads of GICV_IAR (continued)

Interrupt status GICV_CTLR.AckCtl Returned interrupt ID
5-186 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

5 GIC Support for Virtualization
5.5 GIC virtual CPU interface registers
5.5.5 VM End of Interrupt Register, GICV_EOIR

Purpose The virtual machine writes to this register to inform the virtual CPU interface that it has
completed its interrupt service routine for the specified virtual interrupt.

This register corresponds to the GICC_EOIR in the physical CPU interface.

Usage constraints There are no usage constraints.

Configurations This register is part of the GIC Virtualization Extensions.

Attributes See the register summary in Table 5-10 on page 5-179.

Figure 5-15 shows the GICV_EOIR bit assignments.

Figure 5-15 GICV_EOIR bit assignments

The GICV_EOIR bit assignments are the same as the bit assignments for the GICC_EOIR, the corresponding
register in the physical CPU interface. See the GICC_EOIR description for more information. This section describes
the how the behavior of GICV_EOIR differs from the behavior of GICC_EOIR.

The behavior of GICV_EOIR depends on the setting of GICV_CTLR.EOImode:
0 Both the priority drop and the deactivate interrupt effects occur.
1 Only the priority drop effect occurs.

If the GICH_LRn.HW bit in the matching List register is set to 1, indicating a hardware interrupt, then a deactivate
request is sent to the physical Distributor, identifying the Physical ID from the corresponding field in the List
register. This effect is identical to a Non-secure write to GICC_DIR from the processor having that physical ID.
This means that if the corresponding physical interrupt is in Group 0 the request is ignored.

See Behavior of writes to GICC_EOIR, GICv2 on page 4-140 for more information.

A successful EOI request means that:

• The highest priority bit in the GICH_APR is cleared, causing the running priority to drop

• If GICC_CTLR.EOImode == 0, the interrupt is deactivated in the corresponding List register. If the interrupt
corresponds to a hardware interrupt, the interrupt is also deactivated in the Distributor.

Note
 The only interrupts that can target the hypervisor are Group 1 interrupts and therefore only Group 1 interrupts

are deactivated in the Distributor.

Table 5-13 provides a summary of GICV_EOIR operation.

31 9 0

Reserved

10

EOIINTID

1213

CPUID

Table 5-13 GICV_EOIR operation

Interrupt status GICV_CTLR.AckCtl Effect

Group 0 interrupt x EOI operation performed

Group 1 interrupt 0 UNPREDICTABLE

Group 1 interrupt 1 EOI operation performed
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 5-187
ID072613 Non-Confidential

5 GIC Support for Virtualization
5.5 GIC virtual CPU interface registers
5.5.6 VM Running Priority Register, GICV_RPR

Purpose Indicates the priority of the highest priority virtual interrupt that is active on the virtual CPU
interface.

This register corresponds to the GICC_RPR in the physical CPU interface.

Usage constraints Depending on the implementation, if no bits are set in the Active Priorities register,
GICH_APR, indicating no active interrupts in the virtual CPU interface, the priority reads
as 0xFF, or 0xF8 to reflect the number of supported interrupt priority bits, see VGIC Type
Register, GICH_VTR on page 5-170 and Active Priorities Register, GICH_APR on
page 5-175.

Configurations This register is part of the GIC Virtualization Extensions.

Attributes See the register summary in Table 5-10 on page 5-179.

Figure 5-16 shows the GICV_RPR bit assignments.

Figure 5-16 GICV_RPR bit assignments

The GICV_RPR bit assignments are the same as the bit assignments for the GICC_RPR, the corresponding register
in the physical CPU interface. See the GICC_RPR description for more information.

31 7 0

Reserved

8

Priority
5-188 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

5 GIC Support for Virtualization
5.5 GIC virtual CPU interface registers
5.5.7 VM Highest Priority Pending Interrupt Register, GICV_HPPIR

Purpose Indicates the Interrupt ID of the pending virtual interrupt with the highest priority on the
virtual CPU interface. Also returns the CPU ID for a software interrupt, that is, if the
GICH_LRn.HW bit==0.

This register corresponds to the GICC_HPPIR in the physical CPU interface.

Usage constraints Never returns the Interrupt ID of an interrupt that is active and pending. Returns a CPU ID
only for interrupts triggered in software.

Configurations This register is part of the GIC Virtualization Extensions.

Attributes See the register summary in Table 5-10 on page 5-179.

Figure 5-17 shows the GICV_HPPIR bit assignments.

Figure 5-17 GICV_HPPIR bit assignments

The GICV_HPPIR bit assignments are the same as the bit assignments for the GICC_HPPIR, the corresponding
register in the physical CPU interface. See the GICC_HPPIR description for more information. This section
describes how the behavior of GICV_HPPIR differs from the behavior of GICC_HPPIR.

In certain situations, such as when there are pending interrupts that are not stored in the List registers, this register
returns an inappropriate spurious interrupt value, 1023. This is unlikely to cause any problems because:

• An implementation might not use this register

• The register works correctly even if it is inaccurate some of the time. A low priority pending interrupt is
unlikely to affect the operating system if higher priority interrupts are active.

However, to guarantee no problems, ensure that the hypervisor always maintains the highest priority pending
interrupt in the List registers, if one exists.

Table 5-14 shows GICV_HPPIR operation.

31 9 0

Reserved

10

PENDINTID

1213

CPUID

Table 5-14 GICV_HPPIR operation

Interrupt status GICV_CTLR.AckCtl Returned interrupt ID

Highest priority pending interrupt is Group 0 x ID of Group 0 interrupt

Highest priority pending interrupt is Group 1 0 Interrupt ID 1022

1 ID of Group 1 interrupt

No pending interrupts x Interrupt ID 1023
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 5-189
ID072613 Non-Confidential

5 GIC Support for Virtualization
5.5 GIC virtual CPU interface registers
5.5.8 VM Aliased Binary Point Register, GICV_ABPR

The GICV_ABPR characteristics are:

Purpose Provides a binary point register for the Group1 virtual interrupts.

Note
 GICH_LRn.Grp1 determines whether a virtual interrupt is Group 0 or Group 1.

This register corresponds to the GICC_ABPR in the physical CPU interface.

Usage constraints The value contained in this register is one greater than the actual applied binary point value,
see The effect of interrupt grouping on priority grouping on page 3-57 for more information.

Configurations This register is part of the GIC Virtualization Extensions.

Attributes See the register summary in Table 5-10 on page 5-179.

Figure 5-18 shows the GICV_ABPR bit assignments.

Figure 5-18 GICV_ABPR bit assignments

The GICV_ABPR bit assignments are the same as the bit assignments for the GICC_ABPR, the corresponding
register in the physical CPU interface. See the GICC_ABPR description for more information.

31 2 0

Reserved

3

Binary
point
5-190 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

5 GIC Support for Virtualization
5.5 GIC virtual CPU interface registers
5.5.9 VM Aliased Interrupt Acknowledge Register, GICV_AIAR

The GICV_AIAR characteristics are:

Purpose A virtual machine reads this register to obtain the interrupt ID of the signaled virtual
interrupt. This read acts as an acknowledge for a Group 1 virtual interrupt.

Operation is similar to GICV_IAR, except that the virtual machine only uses this register to
acknowledge Group 1 interrupts. Group 0 interrupts are treated as spurious interrupts.

This register corresponds to the GICC_AIAR in the physical CPU interface.

Usage constraints There are no usage constraints.

Configurations This register is part of the GIC Virtualization Extensions.

Attributes See the register summary in Table 5-10 on page 5-179.

Figure 5-19 shows the GICV_AIAR bit assignments.

Figure 5-19 GICV_AIAR bit assignments

The GICV_AIAR bit assignments are the same as the bit assignments for the GICC_AIAR, the corresponding
register in the physical CPU interface. See the GICC_AIAR description for more information.

The operation of this register is similar to the operation of GICV_IAR. When the virtual machine reads
GICV_AIAR, the corresponding interrupt List register is checked to determine whether the interrupt is Group 0 or
Group 1:

• If the GICH_LRn.Grp1 bit is 0, the interrupt is Group 0. The spurious interrupt ID 1023 is returned and the
interrupt is not acknowledged.

• If the GICH_LRn.Grp1 bit is 1, the interrupt is Group 1. The interrupt ID is returned, and if GICH_LRn.HW
is 0, indicating that the interrupt is generated in software, the CPUID is returned also.

The List register entry is updated to active state, and the appropriate bit in the GICH_APR, is set to 1.

If there is no pending virtual interrupt with sufficient priority to be signaled to the processor, then the spurious
interrupt ID 1023 is returned.

Table 5-15 shows GICV_AIAR operation.

31 9 0

Reserved

10

Interrupt ID

1213

CPUID

Table 5-15 GICV_AIAR operation

Interrupt status GICV_CTLR.AckCtl Returned interrupt ID

Highest priority pending interrupta is Group 0

a. Of sufficient priority to be signaled to the processor if the virtual CPU interface is enabled and the GICH_HCR.En
bit is set to 1.

x Interrupt ID 1023

Highest priority pending interrupt is Group 1 x ID of Group 1 interrupt

No pending interrupts of sufficient priority to be signaled x Interrupt ID 1023
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 5-191
ID072613 Non-Confidential

5 GIC Support for Virtualization
5.5 GIC virtual CPU interface registers
5.5.10 VM Aliased End of Interrupt Register, GICV_AEOIR

The GICV_AEOIR characteristics are:

Purpose A virtual machine writes to this register to indicate completion of a Group 1 virtual
interrupt. Operation is similar to GICV_EOIR, except that the virtual machine only uses this
register to indicate completion of Group 1 interrupts.

This register corresponds to the GICC_AEOIR in the physical CPU interface.

Usage constraints There are no usage constraints.

Configurations This register is part of the GIC Virtualization Extensions.

Attributes See the register summary in Table 5-10 on page 5-179.

Figure 5-20 shows the GICV_AEOIR bit assignments.

Figure 5-20 GICV_AEOIR bit assignments

A successful EOI request means that:

• The highest priority bit in the GICH_APR is cleared, causing the running priority to drop

• If GICC_CTLR.EOImode == 0, the interrupt is deactivated in the corresponding List register. If the interrupt
corresponds to a hardware interrupt, the interrupt is also deactivated in the Distributor.

Note
 The only interrupts that can target the hypervisor are Group 1 interrupts and therefore only Group 1 interrupts

are deactivated in the Distributor.

Table 5-16 shows GICV_AEOIR operation.

31 9 0

Reserved

10

Interrupt ID

1213

CPUID

Table 5-16 GICV_AEOIR operation

Interrupt status GICV_CTLR.AckCtl Effect

Group 0 interrupt x UNPREDICTABLE

Group 1interrupt x EOI operation is performed
5-192 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

5 GIC Support for Virtualization
5.5 GIC virtual CPU interface registers
5.5.11 VM Aliased Highest Priority Pending Interrupt Register, GICV_AHPPIR

The GICV_AHPPIR characteristics are:

Purpose Returns the interrupt ID of the highest priority pending Group 1 virtual interrupt in the List
registers.

This register corresponds to the GICC_AHPPIR in the physical CPU interface.

Usage constraints Never returns the Interrupt ID of an interrupt that is active and pending.

Configurations This register is part of the GIC Virtualization Extensions.

Attributes See the register summary in Table 5-10 on page 5-179.

Figure 5-21 shows the GICV_AHPPIR bit assignments.

Figure 5-21 GICV_AHPPIR bit assignments

The GICV_AHPPIR bit assignments are the same as the bit assignments of the GICC_AHPPIR, the corresponding
register in the physical CPU interface. See the Aliased Highest Priority Pending Interrupt Register, GICC_AHPPIR
on page 4-148 description for more information.

Table 5-17 shows GICV_AHPPIR operation.

31 9 0

Reserved

10

PENDINTID

1213

CPUID

Table 5-17 GICV_AHPPIR operation

Interrupt status GICV_CTLR.AckCtl Returned interrupt ID

Highest priority pending interrupt is Group 0 x Interrupt ID 1023

Highest priority pending interrupt is Group 1 x ID of Group 1 interrupt

No pending interrupts of sufficient priority to be signaled x Interrupt ID 1023
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 5-193
ID072613 Non-Confidential

5 GIC Support for Virtualization
5.5 GIC virtual CPU interface registers
5.5.12 VM Active Priorities Registers, GICV_APRn

The GICV_APR characteristics are:

Purpose For software compatibility, these registers are present in the virtual CPU interface.
However, a virtual machine is not required to preserve and restore state during power down,
and therefore does not have to use these registers.

Note
 Instead, the hypervisor uses the GICH_APR register to save the GIC state for each virtual

machine.

These registers correspond to the GICC_APRn registers in the physical CPU interface.

Usage constraints Because these registers are not required for preserving and restoring state, their content is
IMPLEMENTATION DEFINED. Reading the content of these registers and then writing the same
values does not change any state.

Configurations These registers are part of the GIC Virtualization Extensions.

ARM suggests implementing:
• GICV_APR0 as an alias of GICH_APR
• the remaining GICV_APRn registers as RAZ/WI.

Attributes See the register summary in Table 5-10 on page 5-179.

The GICV_APRn bit assignments are the same as the bit assignments of the GICC_APRn registers, the
corresponding registers in the physical CPU interface. See the GICC_APRn description for more information.

Note
 A virtualized processor does not require separate Secure and Non-secure APRs, and only a single set of Active
Priorities registers, GICV_APRn are defined. However, the register map allocates space for both sets of registers,
to maximise software compatibility. The register space corresponding to the Non-secure APRs is RAZ/WI.
5-194 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

5 GIC Support for Virtualization
5.5 GIC virtual CPU interface registers
5.5.13 VM CPU Interface Identification Register, GICV_IIDR

The GICV_IIDR characteristics are:

Purpose Provides information about the implementer and revision of the virtual CPU interface.

This register corresponds to the GICC_IIDR register in the physical CPU interface.

Usage constraints No usage constraints.

Configurations This register is part of the GIC Virtualization Extensions.

Attributes See the register summary in Table 5-10 on page 5-179.

Figure 5-22 shows the GICV_IIDR bit assignments.

Figure 5-22 GICV_IIDR bit assignments

The GICV_IIDR bit assignments are the same as the bit assignments of the GICC_IIDR, the corresponding register
in the physical CPU interface. See the CPU Interface Identification Register, GICC_IIDR on page 4-152 description
for more information.

31 0

Revision Implementer

20 11

ProductID

19 121516

Architecture
version
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. 5-195
ID072613 Non-Confidential

5 GIC Support for Virtualization
5.5 GIC virtual CPU interface registers
5.5.14 VM Deactivate Interrupt Register, GICV_DIR

The GICV_DIR characteristics are:

Purpose This register deactivates the virtual interrupt with the specified interrupt ID in the List
registers.

This register corresponds to the GICC_DIR register in the physical CPU interface.

Usage constraints Writes to this register are valid only when GICV_CTLR.EOImode is set to 1. If
GICV_CTLR.EOImode is set to 0, any write to this register is UNPREDICTABLE.

Configurations This register is part of the GIC Virtualization Extensions.

Attributes See the register summary in Table 5-10 on page 5-179.

Figure 5-23 shows the GICV_DIR bit assignments.

Figure 5-23 GICV_DIR bit assignments

The GICV_DIR bit assignments are the same as the bit assignments for the GICC_DIR, the corresponding register
in the physical CPU interface. See the GICC_DIR description for more information. This section describes the
behavior of the GICV_DIR differs from the behavior of the GICC_DIR.

When the virtual machine writes to this register, the specified interrupt in the List registers is changed from active
to invalid, or from active and pending to pending. If the specified interrupt is present in the List registers but not in
the active or pending and active states, the effect is UNPREDICTABLE. If the specified Interrupt does not exist in the
List registers, the GICH_HCR.EOIcount field is incremented, potentially generating a maintenance interrupt.

Note
 If the specified interrupt does not exist in the List registers, the virtual machine cannot recover the interrupt ID.
Therefore, the hypervisor must ensure that, when GICV_CTLR.EOImode is set to 1, no more than one active
interrupt is transferred from the List registers into a software list. If more than one active interrupt that is not stored
in the List registers exists, the hypervisor must handle accesses to GICV_DIR in software, typically by trapping
these accesses.

If the GICH_LRn.HW bit in the matching List register is set to 1, indicating a hardware interrupt, then a deactivate
request is sent to the physical Distributor, identifying the Physical ID from the corresponding field in the List
register. This effect is identical to a Non-secure write to GICC_DIR from the processor having that physical ID.
This means that if the corresponding physical interrupt is marked as Group 0, the request is ignored.

Note
 Interrupt deactivation using GICV_DIR is based on the provided interrupt ID, with no requirement to deactivate
interrupts in any particular order. A single register is therefore used to deactivate Group 0 and Group 1 interrupts.

Reserved

31 13 12 10 9 0

CPUID InterruptID
5-196 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

Appendix A
Pseudocode Index

This appendix gives an index of the pseudocode functions defined in this specification. It contains the following
section:
• Index of pseudocode functions on page A-198.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. A-197
ID072613 Non-Confidential

Appendix A Pseudocode Index
A.1 Index of pseudocode functions
A.1 Index of pseudocode functions
Table A-1 is an index of the pseudocode functions defined in this specification. Where different forms of the
function are used to support the architecture with and without the Security Extensions, the index refers to both
forms.

Note
 The pseudocode in this document follows the ARM architecture pseudocode conventions. For more information,
see ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition.

Table A-1 Pseudocode functions and procedures

Function Meaning See

AcknowledgeInterrupt() Set the active state and attempt to clear
the pending state for the interrupt
associated with argument InterruptID.

General helper functions and definitions on
page 3-61

AnyActiveInterrupts() Return TRUE if any interrupt is in the
active state.

General helper functions and definitions on
page 3-61

BinaryPointRegWrite() Write behavior of accesses to GICC_BPR
when the Security Extensions are
implemented.

Binary Point Register, GICC_BPR on page 4-133

GIC_GenerateExceptions() Exception generation by the CPU
interface using the GIC prioritization
scheme.

Exception generation pseudocode on page 3-64
Exception generation pseudocode, with interrupt
grouping on page 3-64

GIC_PriorityMask() Return the priority mask to be used for
priority grouping as part of interrupt
prioritization

General helper functions and definitions on
page 3-61

HighestPriorityPendingInterrupt() Returns the ID of the highest priority
interrupt that is pending. If no interrupts
are pending, returns a spurious interrupt
ID.

General helper functions and definitions on
page 3-61

IgnoreWriteRequest() No operation. Indicates cases where the
GIC ignores a write to a register.

General helper functions and definitions on
page 3-61

IsEnabled() Return TRUE if the interrupt is enabled. General helper functions and definitions on
page 3-61

IsGrp0Int() Return TRUE if the interrupt identified by
the function argument is configured as a
Group 0 interrupt.

General helper functions and definitions on
page 3-61

IsPending() Return TRUE if the interrupt identified by
the function argument is pending.

General helper functions and definitions on
page 3-61

MaskRegRead() Read behavior of accesses to GICC_PMR
when the Security Extensions are
implemented.

Interrupt Priority Mask Register, GICC_PMR on
page 4-131

MaskRegWrite() Write behavior of accesses to
GICC_PMR when the Security
Extensions are implemented.

Interrupt Priority Mask Register, GICC_PMR on
page 4-131
A-198 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

Appendix A Pseudocode Index
A.1 Index of pseudocode functions
PriorityIsHigher() Return TRUE if the first argument of the
function has a higher priority than the
second argument.

General helper functions and definitions on
page 3-61

PriorityRegRead() Read behavior of accesses to the
GICD_IPRIORITYRn, GICC_PMR and
GICC_RPR when the Security
Extensions are implemented.

The effect of the GIC Security Extensions on
accesses to prioritization registers on page 3-66

PriorityRegWrite() Write behavior of accesses to the
GICD_IPRIORITYRn and GICC_PMR
when the Security Extensions are
implemented.

The effect of the GIC Security Extensions on
accesses to prioritization registers on page 3-66

ReadGICC_HPPIR() Returns the value of GICC_HPPIR read
by a CPU access.

Highest Priority Pending Interrupt Register,
GICC_HPPIR on page 4-143

ReadGICC_IAR() Returns the value of GICC_IAR read by a
CPU access.

Interrupt Acknowledge Register, GICC_IAR on
page 4-135

ReadGICC_RPR() Returns the value of GICC_RPR read by
a CPU access.

Running Priority Register, GICC_RPR on
page 4-142

ReadGICD_IPRIORITYR() Return the priority value of the interrupt
identified by the function argument, by
reading the appropriate
GICD_IPRIORITYRn.

General helper functions and definitions on
page 3-61

ReadGICD_ITARGETSR() Returns an 8-bit field specifying which
processors are to receive the interrupt
specified by argument InterruptID.

General helper functions and definitions on
page 3-61

SGI_CpuID() Returns the ID of the highest priority
processor for the software generated
interrupt specified by InterruptID.

General helper functions and definitions on
page 3-61

SignalFIQ() If the input parameter is TRUE, signal the
target processor to request an FIQ
exception.

General helper functions and definitions on
page 3-61

SignalIRQ() If the input parameter is TRUE, signal the
target processor to request an IRQ
exception.

General helper functions and definitions on
page 3-61

UpdateExceptionState() GIC exception prioritization scheme used
by the CPU interface

Exception generation pseudocode on page 3-64

WriteGICD_IPRIORITYR() Set the priority value of the interrupt
identified by the function argument, by
writing to the appropriate
GICD_IPRIORITYRn.

General helper functions and definitions on
page 3-61

Table A-1 Pseudocode functions and procedures (continued)

Function Meaning See
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. A-199
ID072613 Non-Confidential

Appendix A Pseudocode Index
A.1 Index of pseudocode functions
A-200 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

Appendix B
Register Names

This appendix describes the relationship between the architectural names of the registers described in this
specification, and their legacy aliases. It also provides an index of the architectural names. It contains the following
sections:
• Alternative register names on page B-202
• Register name aliases on page B-203
• Index of architectural names on page B-204.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. B-201
ID072613 Non-Confidential

Appendix B Register Names
B.1 Alternative register names
B.1 Alternative register names
GICv2 suggests replacement register names for GICv1 registers. Table B-1 shows the GICv1 names and the GICv2
suggested replacement names for the registers in the Distributor.

Table B-2 shows the GICv1 names and the GICv2 suggested replacement names for the registers in the CPU
interface.

Table B-1 Replacement names for the registers in the Distributor

Register GICv2 name GICv1 name

Distributor Control GICD_CTLR ICDDCR

Interrupt Controller Type GICD_TYPER ICDICTR

Distributor Implementer Identification GICD_IIDR ICDIIDR

Interrupt Group GICD_IGROUPRn ICDISRn

Interrupt Set-Active GICD_ISACTIVERn ICDABRn

Interrupt Set-Enable GICD_ISENABLERn ICDISERn

Interrupt Clear-Enable GICD_ICENABLERn ICDICERn

Interrupt Set-Pending GICD_ISPENDRn ICDISPRn

Interrupt Clear-Pending GICD_ICPENDRn ICDICPRn

Interrupt Priority GICD_IPRIORITYRn ICDIPRn

Interrupt Processor Targets GICD_ITARGETSRn ICDIPTRn

Interrupt Configuration GICD_ICFGRn ICDICRn

Software Generated Interrupt GICD_SGIR ICDSGIR

Identification - -

Table B-2 Replacement names for the registers in the CPU interface

Register GICv2 name GICv1 name

CPU Interface Control GICC_CTLR ICCICR

Priority Mask GICC_PMR ICCPMR

Binary Point Register GICC_BPR ICCBPR

Interrupt Acknowledge GICC_IAR ICCIAR

End of Interrupt GICC_EOIR ICCEOIR

Running Priority GICC_RPR ICCRPR

Aliased Binary Point GICC_ABPR ICCABPR

Highest Priority Pending Interrupt GICC_HPPIR ICCHPIR

CPU Implementer Identification GICC_IIDR ICCIIDR
B-202 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

Appendix B Register Names
B.2 Register name aliases
B.2 Register name aliases
Some implementations of this GIC architecture, for historical reasons, do not use the architectural names of the
registers described in this specification. Developers must not rely on this distinction being maintained in future
versions of the ARM GIC architecture. Table B-3 shows the alias names that are sometimes used for the registers
in the Distributor.

Table B-4 shows the alias names that are sometimes used for the registers in the CPU interface.

Table B-3 Alias names for the registers in the Distributor

Register Name Alias

Distributor Control GICD_CTLR enable_s, enable_ns

Interrupt Controller Type GICD_TYPER ic_type_reg

Distributor Implementer Identification GICD_IIDR dist_ident_reg

Interrupt Group GICD_IGROUPRn int_security

Interrupt Set-Enable GICD_ISENABLERn enable_set

Interrupt Clear-Enable GICD_ICENABLERn enable_clr

Interrupt Set-Pending GICD_ISPENDRn pending_set

Interrupt Clear-Pending GICD_ICPENDRn pending_clr

Interrupt Priority GICD_IPRIORITYRn priority_level

Interrupt Processor Targets GICD_ITARGETSRn target

Interrupt Configuration GICD_ICFGRn int_config

Software Generated Interrupt GICD_SGIR sti_control

Identification - -

Table B-4 Alias names for the registers in the CPU interface

Register Name Alias

CPU Interface Control GICC_CTLR control_s, control_ns

Priority Mask GICC_PMR priority_mask

Binary Point Register GICC_BPR bin_pt_s, bin_pt_ns

Interrupt Acknowledge GICC_IAR int_ack

End of Interrupt GICC_EOIR EOI

Running Priority GICC_RPR run_priority

Aliased Binary Point GICC_ABPR alias_bin_pt_ns

Highest Priority Pending Interrupt GICC_HPPIR hi_pending

CPU Implementer Identification GICC_IIDR cpu_ident
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. B-203
ID072613 Non-Confidential

Appendix B Register Names
B.3 Index of architectural names
B.3 Index of architectural names
Table B-5 is an alphabetic index of the GIC register names, indexing the description of each register. An n at the
end of a register name, as in GICC_APRn, shows that there are multiple instances of the register.

Table B-5 Index of GIC register names

Register name Description

Component IDn Identification registers on page 4-119

GICC_ABPR Aliased Binary Point Register, GICC_ABPR on page 4-145

GICC_APRn Active Priorities Registers, GICC_APRn on page 4-149

GICC_AEOIR Aliased End of Interrupt Register, GICC_AEOIR on page 4-147

GICC_AIAR Aliased Interrupt Acknowledge Register, GICC_AIAR on page 4-146

GICC_AHPPIR Aliased Highest Priority Pending Interrupt Register, GICC_AHPPIR on page 4-148

GICC_BPR Binary Point Register, GICC_BPR on page 4-133

GICC_CTLR CPU Interface Control Register, GICC_CTLR on page 4-125

GICC_DIR Deactivate Interrupt Register, GICC_DIR on page 4-153

GICC_EOIR End of Interrupt Register, GICC_EOIR on page 4-138

GICC_HPPIR Highest Priority Pending Interrupt Register, GICC_HPPIR on page 4-143

GICC_IAR Interrupt Acknowledge Register, GICC_IAR on page 4-135

GICC_IIDR CPU Interface Identification Register, GICC_IIDR on page 4-152

GICC_NSAPRn Non-secure Active Priorities Registers, GICC_NSAPRn on page 4-151

GICC_PMR Interrupt Priority Mask Register, GICC_PMR on page 4-131

GICC_RPR Running Priority Register, GICC_RPR on page 4-142

GICD_CPENDSGIRn SGI Clear-Pending Registers, GICD_CPENDSGIRn on page 4-115

GICD_CTLR Distributor Control Register, GICD_CTLR on page 4-85

GICD_ICACTIVERn Interrupt Clear-Active Registers, GICD_ICACTIVERn on page 4-103

GICD_ICENABLERn Interrupt Clear-Enable Registers, GICD_ICENABLERn on page 4-95

GICD_ICFGRn Interrupt Configuration Registers, GICD_ICFGRn on page 4-109

GICD_ICPENDRn Interrupt Clear-Pending Registers, GICD_ICPENDRn on page 4-99

GICD_IGROUPRn Interrupt Group Registers, GICD_IGROUPRn on page 4-91

GICD_IIDR Distributor Implementer Identification Register, GICD_IIDR on page 4-90

GICD_IPRIORITYRn Interrupt Priority Registers, GICD_IPRIORITYRn on page 4-104

GICD_ISACTIVERn Interrupt Set-Active Registers, GICD_ISACTIVERn on page 4-102

GICD_ISENABLERn Interrupt Set-Enable Registers, GICD_ISENABLERn on page 4-93

GICD_ISPENDRn Interrupt Set-Pending Registers, GICD_ISPENDRn on page 4-97

GICD_ITARGETSRn Interrupt Processor Targets Registers, GICD_ITARGETSRn on page 4-106
B-204 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

Appendix B Register Names
B.3 Index of architectural names
GICD_SGIR Software Generated Interrupt Register, GICD_SGIR on page 4-113

GICD_NSACRn Non-secure Access Control Registers, GICD_NSACRn on page 4-111

GICD_SPENDSGIRn SGI Set-Pending Registers, GICD_SPENDSGIRn on page 4-117

GICD_TYPER Interrupt Controller Type Register, GICD_TYPER on page 4-88

Peripheral IDn Identification registers on page 4-119

GICH_APR Active Priorities Register, GICH_APR on page 5-175

GICH_EISRn End of Interrupt Status Registers, GICH_EISR0 and GICH_EISR1 on page 5-173

GICH_ELRSRn Empty List Register Status Registers, GICH_ELRSR0 and GICH_ELRSR1 on page 5-174

GICH_HCR Hypervisor Control Register, GICH_HCR on page 5-168

GICH_LRn List Registers, GICH_LRn on page 5-176

GICH_MISR Maintenance Interrupt Status Register, GICH_MISR on page 5-172

GICH_VMCR Virtual Machine Control Register, GICV_CTLR on page 5-180

GICH_VTR VGIC Type Register, GICH_VTR on page 5-170

GICV_ABPR VM Aliased Binary Point Register, GICV_ABPR on page 5-190

GICV_AEOIR VM Aliased End of Interrupt Register, GICV_AEOIR on page 5-192

GICV_AHPPIR VM Aliased Highest Priority Pending Interrupt Register, GICV_AHPPIR on page 5-193

GICV_AIAR VM Aliased Interrupt Acknowledge Register, GICV_AIAR on page 5-191

GICV_APRn VM Active Priorities Registers, GICV_APRn on page 5-194

GICV_BPR VM Binary Point Register, GICV_BPR on page 5-184

GICV_CTLR Virtual Machine Control Register, GICV_CTLR on page 5-180

GICV_EOIR VM End of Interrupt Register, GICV_EOIR on page 5-187

GICV_HPPIR VM Highest Priority Pending Interrupt Register, GICV_HPPIR on page 5-189

GICV_IAR VM Interrupt Acknowledge Register, GICV_IAR on page 5-185

GICV_PMR VM Priority Mask Register, GICV_PMR on page 5-183

GICV_RPR VM Running Priority Register, GICV_RPR on page 5-188

GICV_IIDR VM CPU Interface Identification Register, GICV_IIDR on page 5-195

GICV_DIR VM Deactivate Interrupt Register, GICV_DIR on page 5-196

Table B-5 Index of GIC register names (continued)

Register name Description
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. B-205
ID072613 Non-Confidential

Appendix B Register Names
B.3 Index of architectural names
B-206 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

Appendix C
Revisions

This appendix describes the main technical changes between released issues of this book. There are no technical
changes between issue B and issue B.b, see the Status statement in the Release Information at the start of the book.

Table C-1 Differences between issue A and issue B

Change Location

Section updated to describe interrupt grouping functionality About the Generic Interrupt Controller architecture on page 1-14

Section updated Changes in version 2.0 of the Specification on page 1-15

Section updated Security Extensions support on page 1-16

Section added Virtualization support on page 1-17

Section updated to clarify SGI description and to include virtual
interrupts

Interrupt types on page 1-18

Section updated to describe virtual CPU interface About GIC partitioning on page 2-22

Note added to clarify GICv1 functionality The Distributor on page 2-24

Section updated to clarify GICv2 CPU interface behavior CPU interfaces on page 2-26

Section added Interrupt signal bypass, and GICv2 bypass disable on page 2-27

Section added Power management, GIC v2 on page 2-31

GICC_CTLR.SBPR bit renamed to GICC_CTLR.CBPR to
clarify terminology.

• Chapter 3 Interrupt Handling and Prioritization
• Chapter 4 Programmers’ Model
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. C-207
ID072613 Non-Confidential

Appendix C Revisions

Section updated to include interrupt grouping functionality • About interrupt handling and prioritization on page 3-34
• Identifying the supported interrupts on page 3-35

Section updated to clarify EOI behavior and scope. General handling of interrupts on page 3-37

Section added Priority drop and interrupt deactivation on page 3-38

Section updated to clarify EOI behavior and of Secure writes to
GICD_SGIR

Interrupt handling state machine on page 3-41

Section updated to clarify scope of interrupt grouping
functionality

Interrupt prioritization on page 3-44

Section updated to clarify preemption behavior and to include
information about priority drop functionality

Preemption on page 3-45

Section updated to clarify functionality Priority grouping on page 3-45

Added table to clarify priority grouping behavior Table 3-3 on page 3-46

Section renamed and updated to clarify scope, and to describe
interrupt grouping functionality

The effect of interrupt grouping on interrupt handling on
page 3-48

Section updated to clarify interrupt handling The effect of interrupt grouping on interrupt acknowledgement on
page 3-50

Section added GIC power on or reset configuration on page 3-51

Section renamed and updated to clarify scope, and to describe
interrupt grouping functionality

Interrupt grouping and interrupt prioritization on page 3-53

Section updated to clarify functionality The effect of interrupt grouping on priority grouping on page 3-57

Section added Additional features of the GIC Security Extensions on page 3-59

Section added Access from processors not implementing the ARM Security
Extensions on page 3-59

Pseudocode updated Pseudocode details of interrupt handling and prioritization on
page 3-61

Section added The effect of the Virtualization Extensions on interrupt handling
on page 3-67

Section added Example GIC usage models on page 3-68

Distributor and CPU interface register map tables updated • Table 4-1 on page 4-75
• Table 4-2 on page 4-76

Note added to clarify endianness GIC register access on page 4-77

Section updated to clarify register banking in multiprocessor
systems

Register banking on page 4-77

Section added Enabling and disabling the Distributor and CPU interfaces on
page 4-77

Section updated to include interrupt grouping functionality Effect of the GIC Security Extensions on the programmers’ model
on page 4-80

Table C-1 Differences between issue A and issue B (continued)

Change Location
C-208 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

Appendix C Revisions

Section updated to describe GICv1 and GICv2 differences and
the effect of the Security Extensions

Distributor Control Register, GICD_CTLR on page 4-85

Registers renamed from Interrupt Security Registers, and section
updated to clarify scope

Interrupt Group Registers, GICD_IGROUPRn on page 4-91

Sections updated to clarify register descriptions • Interrupt Set-Enable Registers, GICD_ISENABLERn on
page 4-93

• Interrupt Clear-Enable Registers, GICD_ICENABLERn on
page 4-95

Section updated to clarify level-sensitive interrupt information Interrupt Clear-Pending Registers, GICD_ICPENDRn on
page 4-99

Distributor register descriptions added • Interrupt Set-Active Registers, GICD_ISACTIVERn on
page 4-102

• Interrupt Clear-Active Registers, GICD_ICACTIVERn on
page 4-103

• Non-secure Access Control Registers, GICD_NSACRn on
page 4-111

• SGI Clear-Pending Registers, GICD_CPENDSGIRn on
page 4-115

• SGI Set-Pending Registers, GICD_SPENDSGIRn on
page 4-117

Pseudocode added to shows the effects of the GIC Security
Extensions on accesses to these registers

Interrupt Priority Registers, GICD_IPRIORITYRn on page 4-104

Section updated to clarify usage constraints and change to bit
name.

Software Generated Interrupt Register, GICD_SGIR on
page 4-113

Section updated to describe effects of GICv2 Identification registers on page 4-119

Section updated to describe GICv1 and GICv2 registers and the
effect of the Security Extensions

CPU Interface Control Register, GICC_CTLR on page 4-125

Pseudocode added to shows the effects of the GIC Security
Extensions on accesses to this register

Interrupt Priority Mask Register, GICC_PMR on page 4-131

Section updated to include interrupt grouping functionality Binary Point Register, GICC_BPR on page 4-133

Section updated to clarify interrupt acknowledgement behavior Interrupt Acknowledge Register, GICC_IAR on page 4-135

Section updated to clarify EOI behavior End of Interrupt Register, GICC_EOIR on page 4-138

Section updated to describe effect of Security Extensions Behavior of writes to GICC_EOIR, GICv1 with Security
Extensions on page 4-139

Section added Behavior of writes to GICC_EOIR, GICv2 on page 4-140

Section updated to clarify effect of interrupt grouping
functionality

Highest Priority Pending Interrupt Register, GICC_HPPIR on
page 4-143

Pseudocode added to show the effects of the GIC Security
Extensions on accesses to this register

Section updated to clarify behavior Aliased Binary Point Register, GICC_ABPR on page 4-145

Table C-1 Differences between issue A and issue B (continued)

Change Location
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. C-209
ID072613 Non-Confidential

Appendix C Revisions

CPU interface register descriptions added • Aliased Interrupt Acknowledge Register, GICC_AIAR on
page 4-146

• Aliased End of Interrupt Register, GICC_AEOIR on
page 4-147

• Aliased Highest Priority Pending Interrupt Register,
GICC_AHPPIR on page 4-148

• Active Priorities Registers, GICC_APRn on page 4-149
• Non-secure Active Priorities Registers, GICC_NSAPRn on

page 4-151
• Deactivate Interrupt Register, GICC_DIR on page 4-153

Section added Preserving and restoring GIC state on page 4-155

Chapter added Chapter 5 GIC Support for Virtualization

Appendix removeda Appendix B Software Examples for the GIC

Section added Alternative register names on page B-202

Section updated to include GICv2 registers Index of architectural names on page B-204

a. This content is outside the scope of the Architecture Specification.

Table C-1 Differences between issue A and issue B (continued)

Change Location
C-210 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

Glossary

Activate An interrupt is activated when its state changes either:
• from pending to active
• from pending to active and pending.

For more information see Interrupt handling state machine on page 3-41.

Banked interrupt
In a multiprocessor implementation, a banked interrupt is one of multiple PPIs or SGIs that have the same interrupt
ID, but target different connected processors and have independent states corresponding to each connected
processor.

Banked register A register that has multiple instances.A property of the state of the device determines which instance is in use. For
more information about register banking in the GIC see Register banking on page 4-77.

Deactivate An interrupt is deactivated when its state changes either:
• from active to inactive
• from active and pending to pending.

For more information see Interrupt handling state machine on page 3-41.

Idle priority The lowest possible priority that can be assigned to an interrupt. In an implementation that supports eight-bit priority
fields, the priority value of the idle priority is 0xFF. Otherwise, it is either the largest value with which a RW
GICD_IPRIORITYRn.Priority field can be programed, or 0xFF.

IMP Is an abbreviation used in diagrams to indicate that the bit or bits concerned have IMPLEMENTATION DEFINED
behavior.

IMPLEMENTATION DEFINED
Means that the behavior is not architecturally defined, but should be defined and documented by individual
implementations.

IMPLEMENTATION SPECIFIC
Means that the behavior is not architecturally defined, and does not have to be documented by individual
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. Glossary-211
ID072613 Non-Confidential

 Glossary

implementations. Used when there are a number of implementation options available and the option chosen does
not affect software compatibility.

Interrupt grouping
The configuration of interrupts as either Group 0 or Group 1. One use of interrupt grouping is to manage Secure and
Non-secure interrupts, using Group 0 for Secure interrupts and Group 1 for Non-secure interrupts.

Local access A local access to a particular GIC is an access from a processor with a CPU interface on that GIC. Remote and local
access is permitted to SPIs, but SGIs only support local access. See also Remote access.

Observer
A processor or mechanism within the system, such as peripheral device, that is capable of generating reads from or
writes to memory.

Peripheral interrupt
An interrupt generated by the assertion of an interrupt request signal input to the GIC. The GIC architecture defines
the following types of peripheral interrupt:

Private Peripheral Interrupt (PPI)

A peripheral interrupt that is specific to a single processor.

Shared Peripheral Interrupt (SPI)

A peripheral interrupt that the Distributor can route to a combination of processors, as specified by
the corresponding GICD_ITARGETSRn register.

PPI See Peripheral Interrupt

Preemption level
A preemption level is a supported group priority. For more information, see Priority grouping on page 3-45.

Priority drop Priority drop is when the running priority of a CPU interface is set to the priority of the most recently acknowledged
active interrupt, that has not been subject to an EOI request, but the interrupt remains active.

See also Running priority.

RAO See Read-As-One.

RAO/WI Read-As-One, Writes Ignored.In any implementation, the bit must read as 1, or all 1s for a bit field, and writes to
the field must be ignored.

Software can rely on the bit reading as 1, or all 1s for a bit field, and on writes being ignored.

RAZ See Read-As-Zero.

RAZ/WI Read-As-Zero, Writes Ignored.In any implementation, the bit must read as 0, or all 0s for a bit field, and writes to
the field must be ignored.

Software can rely on the bit reading as 0, or all 0s for a bit field, and on writes being ignored.

Read-As-One (RAO)
In any implementation, the bit must read as 1, or all 1s for a bit field.

Read-As-Zero (RAZ)
In any implementation, the bit must read as 0, or all 0s for a bit field.

Remote access A remote access to a particular GIC is an access from a processor without a CPU interface on that GIC. Remote and
local access is permitted to SPIs, but SGIs only support local access. See also Local access.

Reserved Registers that are reserved are RAZ/WI unless otherwise stated. Bit positions described as Reserved are
UNK/SBZP.

Running priority
The running priority of a CPU interface is either:

• the group priority of the highest priority active interrupt, on that interface, for which there has not been a valid
write to an end of interrupt register
Glossary-212 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

 Glossary

• if there is no active interrupt on the interface for which there has not been a valid write to an end of interrupt
register, the running priority is the idle priority.

See also Idle priority, Priority drop and interrupt deactivation on page 3-38.

SBZ See Should-Be-Zero.

SBZP See Should-Be-Zero-or-Preserved.

Security hole Is a mechanism that bypasses system protection.

SGI See Software-generated interrupt.

Should-Be-Zero (SBZ)
Should be written as 0 (or all 0s for a bit field) by software. Values other than 0 produce UNPREDICTABLE results.

Should-Be-Zero-or-Preserved (SBZP)
Must be written as 0, or all 0s for a bit field, by software if the value is being written without having been previously
read, or if the register has not been initialized. Where the register was previously read on the same processor, since
the processor was last reset, the value in the field should be preserved by writing the value that was previously read.

Hardware must ignore writes to these fields.

If a value is written to the field that is neither 0 (or all 0s for a bit field), nor a value previously read for the same
field on the same processor, the result is UNPREDICTABLE.

Software-generated interrupt (SGI)
An interrupt generated by the GIC in response to software writing to a GIC register. In a multiprocessor
implementation, an SGI is identified by the combination of its interrupt ID and the CPU ID of the processor that
wrote to the GIC to generate the interrupt.

SPI See Peripheral Interrupt

Spurious interrupt
An interrupt that does not require servicing. Usually, refers to an interrupt ID returned by a GIC to a request from a
connected processor. Returning a spurious interrupt ID indicates that there is no pending interrupt on the CPU
interface that the requesting processor can service. For example, if a level-sensitive interrupt request signal to the
GIC causes a CPU interface to signal an interrupt request to a processor, but by the time the processor reads the
GICC_IAR to acknowledge the interrupt the request signal has been deasserted, the GIC returns a spurious interrupt
ID of 1023, to indicate that there is no interrupt request to service.

Sufficient priority
To determine whether to signal an interrupt to its connected processor, a GIC CPU interface must determine whether
the interrupt has sufficient priority to be signaled to the connected processor. It does this by comparing the interrupt
priority with all of:
• the Priority Mask Register, GICC_PMR
• the preemption settings for the interface, as shown by GICC_BPR or GICC_ABPR
• the current running priority for the CPU interface.

If the interrupt has sufficient priority then an interrupt request is signaled to the connected processor.

See also Running priority.

UNK Software must treat a field as containing an UNKNOWN value.In any implementation, the bit must read as 0, or all
0s for a bit field. Software must not rely on the field reading as zero.

UNKNOWN An UNKNOWN value does not contain valid data, and can vary from moment to moment, instruction to instruction,
and implementation to implementation. An UNKNOWN value must not be a security hole. UNKNOWN values must not
be documented or promoted as having a defined value or effect.

UNK/SBZP UNKNOWN on reads, Should-Be-Zero-or-Preserved on writes.

In any implementation, the bit must read as 0, or all 0s for a bit field, and writes to the field must be ignored.

Software must not rely on the field reading as 0, or all 0s for a bit field, and must use an SBZP policy to write to the
field.
ARM IHI 0048B.b Copyright © 2008, 2011, 2013 ARM. All rights reserved. Glossary-213
ID072613 Non-Confidential

 Glossary

UNPREDICTABLE
The behavior cannot be relied upon. UNPREDICTABLE behavior must not represent security holes. UNPREDICTABLE
behavior must not halt or hang the processor, or any parts of the system. UNPREDICTABLE behavior must not be
documented or promoted as having a defined effect.

Valid interrupt ID
An interrupt ID, as returned by a read of GICC_IAR or GICC_AIAR, that is not a spurious interrupt ID. This means
it is an interrupt ID with a value of 1019 or less. If the interrupt is an SGI, then unless the context indicates otherwise,
the valid interrupt ID includes the associated CPUID.
Glossary-214 Copyright © 2008, 2011, 2013 ARM. All rights reserved. ARM IHI 0048B.b
Non-Confidential ID072613

	ARM Generic Interrupt Controller Architecture Specification
	Contents
	Preface
	About this specification
	Intended audience

	Using this specification
	Conventions
	General typographic conventions
	Signals
	Numbers
	Pseudocode descriptions

	Additional reading
	ARM publications
	Other publications

	Feedback
	Feedback on this specification

	1: Introduction
	1.1 About the Generic Interrupt Controller architecture
	1.1.1 GIC architecture specification version
	1.1.2 Changes in version 2.0 of the Specification

	1.2 Security Extensions support
	1.3 Virtualization support
	1.4 Terminology
	1.4.1 Interrupt states
	1.4.2 Interrupt types
	1.4.3 Models for handling interrupts
	1.4.4 Spurious interrupts
	1.4.5 Processor security state and Secure and Non-secure GIC accesses
	1.4.6 Banking

	2: GIC Partitioning
	2.1 About GIC partitioning
	2.2 The Distributor
	2.2.1 Interrupt IDs

	2.3 CPU interfaces
	2.3.1 Interrupt signal bypass, and GICv2 bypass disable
	Interrupt bypass, GICv1 with GIC Security Extensions
	GICv2 interrupt bypass, with bypass disable

	2.3.2 Power management, GIC v2

	3: Interrupt Handling and Prioritization
	3.1 About interrupt handling and prioritization
	3.1.1 Handling different interrupt types in a multiprocessor system
	3.1.2 Identifying the supported interrupts

	3.2 General handling of interrupts
	3.2.1 Priority drop and interrupt deactivation
	3.2.2 Interrupt controls in the GIC
	Interrupt enables
	Setting and clearing pending state of an interrupt
	Finding the active or pending state of an interrupt
	Generating an SGI

	3.2.3 Implications of the 1-N model
	3.2.4 Interrupt handling state machine
	3.2.5 Special interrupt numbers

	3.3 Interrupt prioritization
	3.3.1 Preemption
	3.3.2 Priority masking
	3.3.3 Priority grouping
	3.3.4 Interrupt generation

	3.4 The effect of interrupt grouping on interrupt handling
	3.4.1 GIC interrupt grouping support
	3.4.2 Special interrupt numbers when a GIC supports interrupt grouping
	3.4.3 The effect of interrupt grouping on interrupt acknowledgement
	Interrupt acknowledgement with the GIC Security Extensions

	3.4.4 GIC power on or reset configuration

	3.5 Interrupt grouping and interrupt prioritization
	3.5.1 Software views of interrupt priority in a GIC that includes the Security Extensions
	Recommendations for managing priority values

	3.5.2 Control of preemption by Group 1 interrupts
	Effect of the GIC Security Extensions on control of preemption by Group 1 interrupts

	3.5.3 The effect of interrupt grouping on priority grouping
	3.5.4 Interrupt generation when the GIC supports interrupt grouping

	3.6 Additional features of the GIC Security Extensions
	3.6.1 Access from processors not implementing the ARM Security Extensions
	3.6.2 The effect of the GIC Security Extensions on priority masking
	3.6.3 Priority management and the GIC Security Extensions

	3.7 Pseudocode details of interrupt handling and prioritization
	3.7.1 General helper functions and definitions
	3.7.2 Exception generation pseudocode
	Exception generation pseudocode, with interrupt grouping
	Exception generation pseudocode, when interrupt grouping is not supported

	3.7.3 The effect of the GIC Security Extensions on accesses to prioritization registers

	3.8 The effect of the Virtualization Extensions on interrupt handling
	3.9 Example GIC usage models
	3.9.1 Using IRQs and FIQs to provide Non-secure and Secure interrupts
	Controlling Secure and Non-secure interrupts independently

	3.9.2 Supporting IRQs and FIQs when not using the processor Security Extensions
	3.9.3 Supporting IRQs and FIQs in a virtualized processor environment

	4: Programmers’ Model
	4.1 About the programmers’ model
	4.1.1 GIC register names
	4.1.2 Distributor register map
	4.1.3 CPU interface register map
	4.1.4 GIC register access
	Register banking

	4.1.5 Enabling and disabling the Distributor and CPU interfaces
	Implementations that support interrupt grouping
	Implementations that do not support interrupt grouping

	4.2 Effect of the GIC Security Extensions on the programmers’ model
	4.2.1 Non-secure access to register fields for Group 0 interrupt priorities
	4.2.2 Configuration lockdown
	4.2.3 Effect of the Virtualization Extensions on the programmers’ model

	4.3 Distributor register descriptions
	4.3.1 Distributor Control Register, GICD_CTLR
	4.3.2 Interrupt Controller Type Register, GICD_TYPER
	4.3.3 Distributor Implementer Identification Register, GICD_IIDR
	4.3.4 Interrupt Group Registers, GICD_IGROUPRn
	GICD_IGROUPR0 reset value

	4.3.5 Interrupt Set-Enable Registers, GICD_ISENABLERn
	4.3.6 Interrupt Clear-Enable Registers, GICD_ICENABLERn
	4.3.7 Interrupt Set-Pending Registers, GICD_ISPENDRn
	4.3.8 Interrupt Clear-Pending Registers, GICD_ICPENDRn
	Control of the pending status of level-sensitive interrupts

	4.3.9 Interrupt Set-Active Registers, GICD_ISACTIVERn
	4.3.10 Interrupt Clear-Active Registers, GICD_ICACTIVERn
	4.3.11 Interrupt Priority Registers, GICD_IPRIORITYRn
	4.3.12 Interrupt Processor Targets Registers, GICD_ITARGETSRn
	The effect of changes to an GICD_ITARGETSR

	4.3.13 Interrupt Configuration Registers, GICD_ICFGRn
	4.3.14 Non-secure Access Control Registers, GICD_NSACRn
	4.3.15 Software Generated Interrupt Register, GICD_SGIR
	SGI generation when the GIC implements the Security Extensions

	4.3.16 SGI Clear-Pending Registers, GICD_CPENDSGIRn
	4.3.17 SGI Set-Pending Registers, GICD_SPENDSGIRn
	4.3.18 Identification registers
	Peripheral ID2 Register, ICPIDR2
	The ARM implementation of the GIC Identification Registers

	4.4 CPU interface register descriptions
	4.4.1 CPU Interface Control Register, GICC_CTLR
	4.4.2 Interrupt Priority Mask Register, GICC_PMR
	4.4.3 Binary Point Register, GICC_BPR
	4.4.4 Interrupt Acknowledge Register, GICC_IAR
	Effect of interrupt grouping on reads of the GICC_IAR

	4.4.5 End of Interrupt Register, GICC_EOIR
	Behavior of writes to GICC_EOIR, GICv1 with Security Extensions
	Behavior of writes to GICC_EOIR, GICv2

	4.4.6 Running Priority Register, GICC_RPR
	4.4.7 Highest Priority Pending Interrupt Register, GICC_HPPIR
	Effect of interrupt grouping and the Security Extensions on reads of the GICC_HPPIR

	4.4.8 Aliased Binary Point Register, GICC_ABPR
	4.4.9 Aliased Interrupt Acknowledge Register, GICC_AIAR
	4.4.10 Aliased End of Interrupt Register, GICC_AEOIR
	4.4.11 Aliased Highest Priority Pending Interrupt Register, GICC_AHPPIR
	4.4.12 Active Priorities Registers, GICC_APRn
	4.4.13 Non-secure Active Priorities Registers, GICC_NSAPRn
	4.4.14 CPU Interface Identification Register, GICC_IIDR
	4.4.15 Deactivate Interrupt Register, GICC_DIR
	Behavior of writes to the GICC_DIR

	4.5 Preserving and restoring GIC state

	5: GIC Support for Virtualization
	5.1 About implementing a GIC in a system with processor virtualization
	5.2 Managing the GIC virtual CPU interface
	5.2.1 List registers and virtual interrupt handling
	5.2.2 Completion of virtualized physical interrupts
	5.2.3 Acknowledgement and completion of virtual interrupts
	5.2.4 GIC virtual interface control interface requirements
	5.2.5 Maintenance interrupts
	5.2.6 Software-generated interrupts
	5.2.7 GIC Virtualization Extensions register mapping

	5.3 GIC virtual interface control registers
	5.3.1 Hypervisor Control Register, GICH_HCR
	5.3.2 VGIC Type Register, GICH_VTR
	5.3.3 Virtual Machine Control Register, GICH_VMCR
	5.3.4 Maintenance Interrupt Status Register, GICH_MISR
	5.3.5 End of Interrupt Status Registers, GICH_EISR0 and GICH_EISR1
	5.3.6 Empty List Register Status Registers, GICH_ELRSR0 and GICH_ELRSR1
	5.3.7 Active Priorities Register, GICH_APR
	5.3.8 List Registers, GICH_LRn

	5.4 The virtual CPU interface
	5.4.1 Enabling and disabling virtual interrupts

	5.5 GIC virtual CPU interface registers
	5.5.1 Virtual Machine Control Register, GICV_CTLR
	5.5.2 VM Priority Mask Register, GICV_PMR
	5.5.3 VM Binary Point Register, GICV_BPR
	5.5.4 VM Interrupt Acknowledge Register, GICV_IAR
	5.5.5 VM End of Interrupt Register, GICV_EOIR
	5.5.6 VM Running Priority Register, GICV_RPR
	5.5.7 VM Highest Priority Pending Interrupt Register, GICV_HPPIR
	5.5.8 VM Aliased Binary Point Register, GICV_ABPR
	5.5.9 VM Aliased Interrupt Acknowledge Register, GICV_AIAR
	5.5.10 VM Aliased End of Interrupt Register, GICV_AEOIR
	5.5.11 VM Aliased Highest Priority Pending Interrupt Register, GICV_AHPPIR
	5.5.12 VM Active Priorities Registers, GICV_APRn
	5.5.13 VM CPU Interface Identification Register, GICV_IIDR
	5.5.14 VM Deactivate Interrupt Register, GICV_DIR

	A: Pseudocode Index
	A.1 Index of pseudocode functions

	B: Register Names
	B.1 Alternative register names
	B.2 Register name aliases
	B.3 Index of architectural names

	C: Revisions
	Glossary

