

Controlling Processor C-State
Usage in Linux

A Dell technical white paper describing the use of C-states with

Linux operating systems

Stuart Hayes | Enterprise Linux Engineering

Controlling Processor C-State Usage in Linux

 Page ii

THIS DOCUMENT IS FOR INFORMATIONAL PURPOSES ONLY, AND MAY CONTAIN TYPOGRAPHICAL ERRORS

AND TECHNICAL INACCURACIES. THE CONTENT IS PROVIDED AS IS, WITHOUT EXPRESS OR IMPLIED

WARRANTIES OF ANY KIND.

© 2013 Dell Inc. All rights reserved. Reproduction of this material in any manner whatsoever without

the express written permission of Dell Inc. is strictly forbidden. For more information, contact Dell.

Dell, the DELL logo, and the DELL badge are trademarks of Dell Inc. Intel and Xeon are registered

trademarks of Intel Corporation in the U.S. and other countries. Other trademarks and trade names

may be used in this document to refer to either the entities claiming the marks and names or their

products. Dell Inc. disclaims any proprietary interest in trademarks and trade names other than its

own.

November 2013 | Revision 1.1

Controlling Processor C-State Usage in Linux

 Page iii

Contents
Introduction .. 4

Background ... 4

Checking C-State Usage .. 4

Disabling C-States for Low Latency .. 5

Dynamic Control of C-States .. 6

Summary .. 7

Figures

Figure 1. i7z showing C-state usage when processors limited to C1 .. 5

Figure 2. setcpulatency.c... 7

Controlling Processor C-State Usage in Linux

 Page 4

Introduction
This paper briefly describes when and how to take advantage of C-states on systems running Linux on

x86 computers.

Background
In many computers, processors can use a significant amount of power when they are active. However,

there are many times when the processors in the system are not busy running useful code. There are

several methods designed to lower power usage on a processor when its full capacity isn’t needed.

One of these is the ability to lower the frequency at which a processors is running when it isn’t being

heavily used (each possible frequency is referred to as a processor performance state, or “P-state”).

Another is to put various processor subsystems to sleep completely when the CPU is idle (these are

called processor (CPU) power states, or “C-states”).

However, while it does save power, it takes time to enter and exit C-states. Generally the higher the

C-state, more power is saved when the processor is idle, but it takes longer to get the CPU back up

again when it is needed. The C-states are:

C0 The CPU is actively running code

C1 The CPU uses the HLT instruction when idle—the clock is gated off to parts of

the core, but it is relatively quick to wake up

C1E This is actually just C1, except when C1E is enabled, the CPU lowers the CPU’s

speed & voltage when it is in C1

C2 & up The CPU will shut off various parts of the core for greater power savings, at the

cost of taking longer to wake up

In most Linux distributions today, C-states are enabled by default, which is great for most users. The

operating system will choose which C-state to use based on processor utilization and other factors.

Some users, though, want very low latency, and are very sensitive to how quickly a CPU can run code

when needed, so user control is desired.

Checking C-State Usage
There are several ways to see how much idle time is being spent in the various C-states.

First check the kernel messages from boot (“dmesg |grep idle” or “grep idle /var/log/messages”, for

instance) to see which idle driver is in use.

If the acpi_idle driver is being used, the quickest method is to look at

/proc/acpi/processor/CPU0/power, if it is available. It will show how many times each C-state has

been entered, and how much time has been spent in each C-state. This method is not very user-

friendly, though, because it has to be checked separately for each processor, it only shows cumulative

totals for usage (so you have to check several times to see if a given C-state is currently in use).

Controlling Processor C-State Usage in Linux

 Page 5

Another option when using acpi_idle is the “acpitool” program, but this not included in all Linux

distributions and may have to be downloaded separately.

If the system is using Intel processors, the program “i7z” can be used to check C-state usage regardless

of which idle driver is being used (it accesses processor registers directly to see which C-states are

being used). Another option for use with Intel processors is “powertop.” Note that programs such as

i7z, which directly access processor registers and do not use ACPI, may not number states C2 and

higher the same as they are numbered in ACPI.

Figure 1 – i7z showing C-state usage when processors limited to C1

Disabling C-States for Low Latency
Most newer Linux distributions (Red Hat Enterprise Linux 6, Update 3, for example), on systems with

Intel processors, use the “intel_idle” driver (probably compiled into your kernel and not a separate

module) to use C-states. This driver uses knowledge of the various CPUs to control C-states without

input from system firmware (BIOS). This driver will mostly ignore any other BIOS setting and kernel

parameters, so if you want control over C-states, you should use kernel parameter

“intel_idle.max_cstate=0” to disable this driver. Note that the intel_idle driver will only take control

for CPUs it specifically knows about, so if you have, for example, a very new system with an older linux

distribution, this may not be relevant.

You might also need to disable C1E in BIOS setup, if you are looking for low latency. As mentioned

above, when C1E is enabled, the processor will try to lower processor clock speed and voltage when it

Controlling Processor C-State Usage in Linux

 Page 6

enters the C1 C-state, which might result in higher latency. Note that in the 3.9 and later linux

kernels, the intel_idle driver treats C1 and C1E as separate states, so if you are using the intel_idle

driver with these later kernels you can control whether C1E is used without disabling it in BIOS setup.

When the intel_idle driver is disabled, the Linux kernel will use the acpi_idle driver to use C-states.

System firmware (BIOS) provides a list of available C-states to the operating system using an ACPI

table. So, once intel_idle is disabled, users who want low latency can disable C-states by going into

system (BIOS) setup during boot and telling BIOS to disable C-states (which takes them out of the ACPI

tables).

Disabling C-states in this way will typically result in Linux using the C1 state for idle processors, which

is fairly fast. If BIOS doesn’t allow C-states to be disabled, C-states can also be limited to C1 with the

kernel parameter “idle=halt”, assuming the intel_idle driver is disabled (kernel parameter “idle=halt”

should automatically disable cpuidle, including intel_idle, in newer kernels).

If a user wants the absolute minimum latency, kernel parameter “idle=poll” can be used to keep the

processors in C0 even when they are idle (the processors will run in a loop when idle, constantly

checking to see if they are needed). If this kernel parameter is used, it should not be necessary to

disable C-states in BIOS (or use the “idle=halt” kernel parameter). Take care when keeping processors

in C0, though--this will increase power usage considerably. Also, hyperthreading should probably be

disabled, as keeping processors in C0 can interfere with proper operation of logical cores

(hyperthreading). (The hyperthreading hardware works best when it knows when the logical processors

are idle, and it doesn’t know that if processors are kept busy in a loop when they are not running

useful code.)

And, to reiterate—there are a number of kernel parameters and BIOS settings that deal with C-states,

but most of these will be ignored if intel_idle is in use. Disabling intel_idle with kernel parameter

“intel_idle.max_cstate=0” will result in more intuitive control of C-states, and there should not be any

disadvantage to disabling it on systems that provide correct C-state information to the operating

system via ACPI.

Dynamic Control of C-States
The methods to limit C-states above will all be permanent (until the system is rebooted). If you would

like to have a system have extremely low latency during certain hours, but want more power savings at

other times, there is a method to dynamically control which C-states are used.

To dynamically control C-states, open the file /dev/cpu_dma_latency and write the maximum

allowable latency to it. This will prevent C-states with transition latencies higher than the specified

value from being used, as long as the file /dev/cpu_dma_latency is kept open. Writing a maximum

allowable latency of 0 will keep the processors in C0 (like using kernel parameter “idle=poll”), and

writing a low value (usually 5 or lower) should force the processors to C1 when idle. The exact value

needed to restrict processors to the C1 state depends on various factors such as which idle driver you

are using, which CPUs you are using, and possibly the ACPI tables in your system. Higher values could

also be written to restrict the use of C-states with latency greater than the value written. The value

used should correspond to the latency values in /sys/devices/system/cpu/cpuX/cpuidle/stateY/latency

(where X is the CPU number and Y is the idle state)—CPU idle states that have a greater latency than

written to /dev/cpu_dma_latency should not be used.

Controlling Processor C-State Usage in Linux

 Page 7

One simple way to do this is by compiling a simple program that will write to this file, and stay open

until it is killed. An example of such a program is below, and can be compiled by cutting and pasting

the code into a file called setcpulatency.c, and running “make setcpulatency”.

So, to minimize latency during certain hours, say from 8AM until 5PM, a cron job could be set up to run

at 8AM. This cron job could run setcpulatency in the background with an argument of 0, with a cron

table entry like this:

00 08 * * * /path/to/setcpulatency 0 &

Then, at 5PM, another cron job could kill any program that’s holding /dev/cpu_dma_latency open:

00 17 * * * kill -9 `lsof –t /dev/cpu_dma_latency`

Of course, this is just an example to show how C-states can be dynamically controlled… the crond

service is often disabled in low latency environments, but these steps could be taken manually or run

by other means.

#include <stdio.h>

#include <fcntl.h>

int main(int argc, char **argv) {

 int32_t l;

 int fd;

 if (argc != 2) {

 fprintf(stderr, "Usage: %s <latency in us>\n", argv[0]);

 return 2;

 }

 l = atoi(argv[1]);

 printf("setting latency to %d us\n", l);

 fd = open("/dev/cpu_dma_latency", O_WRONLY);

 if (fd < 0) {

 perror("open /dev/cpu_dma_latency");

 return 1;

 }

 if (write(fd, &l, sizeof(l)) != sizeof(l)) {

 perror("write to /dev/cpu_dma_latency");

 return 1;

 }

 while (1) pause();

}

Figure 2 – setcpulatency.c

Summary
Normally C-States should be enabled by default, which is what is best for most users.

For users who want low latency under all circumstances, C-states should be disabled completely. To

do this, use kernel parameter “intel_idle.max_cstate=0”. In addition, to allow use of the C1 state,

Controlling Processor C-State Usage in Linux

 Page 8

disable the C1E state in BIOS, and use kernel parameter “idle=halt” (or disable C-states in BIOS in lieu

of “idle=halt”). To keep the processors in C0, “idle=poll”.

For users who want low latency sometimes, but want the power savings associated with C-states at

other times, dynamic control of C-states is possible.

There are several ways to check C-state usage, which should be used to verify that any attempt to

control C-state usage is working correctly.

